* improve digital_signal for longer packets, also clean up code * added SLIX2 specific features like signature and unknown keys (for issue #2781), added WRITE_PASSWORD handling * fix NfcV AFI selection * when NFCV_CMD_READ_MULTI_BLOCK reads beyond memory end, return the maximum possible block's content * added SLIX2 reading * fix NXP SYSTEMINFO response check size * capture the first received password if none was set before * clear stored data before reading SLIX details renamed slix2_dump functions to slix2_read * display card block size values as decimal Co-authored-by: あく <alleteam@gmail.com>
		
			
				
	
	
		
			667 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			667 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include "digital_signal.h"
 | 
						|
 | 
						|
#include <furi.h>
 | 
						|
#include <furi_hal.h>
 | 
						|
#include <furi_hal_resources.h>
 | 
						|
#include <math.h>
 | 
						|
 | 
						|
#include <stm32wbxx_ll_dma.h>
 | 
						|
#include <stm32wbxx_ll_tim.h>
 | 
						|
 | 
						|
/* must be on bank B */
 | 
						|
// For debugging purposes use `--extra-define=DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN=gpio_ext_pb3` fbt option
 | 
						|
 | 
						|
struct ReloadBuffer {
 | 
						|
    uint32_t* buffer; /* DMA ringbuffer */
 | 
						|
    uint32_t size; /* maximum entry count of the ring buffer */
 | 
						|
    uint32_t write_pos; /* current buffer write index */
 | 
						|
    uint32_t read_pos; /* current buffer read index */
 | 
						|
    bool dma_active;
 | 
						|
};
 | 
						|
 | 
						|
struct DigitalSequence {
 | 
						|
    uint8_t signals_size;
 | 
						|
    bool bake;
 | 
						|
    uint32_t sequence_used;
 | 
						|
    uint32_t sequence_size;
 | 
						|
    DigitalSignal** signals;
 | 
						|
    uint8_t* sequence;
 | 
						|
    const GpioPin* gpio;
 | 
						|
    uint32_t send_time;
 | 
						|
    bool send_time_active;
 | 
						|
    LL_DMA_InitTypeDef dma_config_gpio;
 | 
						|
    LL_DMA_InitTypeDef dma_config_timer;
 | 
						|
    uint32_t* gpio_buff;
 | 
						|
    struct ReloadBuffer* dma_buffer;
 | 
						|
};
 | 
						|
 | 
						|
struct DigitalSignalInternals {
 | 
						|
    uint64_t factor;
 | 
						|
    uint32_t reload_reg_entries;
 | 
						|
    uint32_t reload_reg_remainder;
 | 
						|
    uint32_t gpio_buff[2];
 | 
						|
    const GpioPin* gpio;
 | 
						|
    LL_DMA_InitTypeDef dma_config_gpio;
 | 
						|
    LL_DMA_InitTypeDef dma_config_timer;
 | 
						|
};
 | 
						|
 | 
						|
#define TAG "DigitalSignal"
 | 
						|
 | 
						|
#define F_TIM (64000000.0)
 | 
						|
#define T_TIM 1562 /* 15.625 ns *100 */
 | 
						|
#define T_TIM_DIV2 781 /* 15.625 ns / 2 *100 */
 | 
						|
 | 
						|
/* end marker in DMA ringbuffer, will get written into timer register at the end */
 | 
						|
#define SEQ_TIMER_MAX 0xFFFFFFFF
 | 
						|
 | 
						|
/* time to wait in loops before returning */
 | 
						|
#define SEQ_LOCK_WAIT_MS 10UL
 | 
						|
#define SEQ_LOCK_WAIT_TICKS (SEQ_LOCK_WAIT_MS * 1000 * 64)
 | 
						|
 | 
						|
/* maximum entry count of the sequence dma ring buffer */
 | 
						|
#define RINGBUFFER_SIZE 128
 | 
						|
 | 
						|
/* maximum number of DigitalSignals in a sequence */
 | 
						|
#define SEQUENCE_SIGNALS_SIZE 32
 | 
						|
/*
 | 
						|
 * if sequence size runs out from the initial value passed to digital_sequence_alloc
 | 
						|
 * the size will be increased by this amount and reallocated
 | 
						|
 */
 | 
						|
#define SEQUENCE_SIZE_REALLOCATE_INCREMENT 256
 | 
						|
 | 
						|
DigitalSignal* digital_signal_alloc(uint32_t max_edges_cnt) {
 | 
						|
    DigitalSignal* signal = malloc(sizeof(DigitalSignal));
 | 
						|
    signal->start_level = true;
 | 
						|
    signal->edges_max_cnt = max_edges_cnt;
 | 
						|
    signal->edge_timings = malloc(signal->edges_max_cnt * sizeof(uint32_t));
 | 
						|
    signal->edge_cnt = 0;
 | 
						|
    signal->reload_reg_buff = malloc(signal->edges_max_cnt * sizeof(uint32_t));
 | 
						|
 | 
						|
    signal->internals = malloc(sizeof(DigitalSignalInternals));
 | 
						|
    DigitalSignalInternals* internals = signal->internals;
 | 
						|
 | 
						|
    internals->factor = 1024 * 1024;
 | 
						|
 | 
						|
    internals->dma_config_gpio.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
 | 
						|
    internals->dma_config_gpio.Mode = LL_DMA_MODE_CIRCULAR;
 | 
						|
    internals->dma_config_gpio.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
 | 
						|
    internals->dma_config_gpio.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
 | 
						|
    internals->dma_config_gpio.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
 | 
						|
    internals->dma_config_gpio.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
 | 
						|
    internals->dma_config_gpio.NbData = 2;
 | 
						|
    internals->dma_config_gpio.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
 | 
						|
    internals->dma_config_gpio.Priority = LL_DMA_PRIORITY_VERYHIGH;
 | 
						|
 | 
						|
    internals->dma_config_timer.PeriphOrM2MSrcAddress = (uint32_t) & (TIM2->ARR);
 | 
						|
    internals->dma_config_timer.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
 | 
						|
    internals->dma_config_timer.Mode = LL_DMA_MODE_NORMAL;
 | 
						|
    internals->dma_config_timer.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
 | 
						|
    internals->dma_config_timer.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
 | 
						|
    internals->dma_config_timer.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
 | 
						|
    internals->dma_config_timer.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
 | 
						|
    internals->dma_config_timer.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
 | 
						|
    internals->dma_config_timer.Priority = LL_DMA_PRIORITY_HIGH;
 | 
						|
 | 
						|
    return signal;
 | 
						|
}
 | 
						|
 | 
						|
void digital_signal_free(DigitalSignal* signal) {
 | 
						|
    furi_assert(signal);
 | 
						|
 | 
						|
    free(signal->edge_timings);
 | 
						|
    free(signal->reload_reg_buff);
 | 
						|
    free(signal->internals);
 | 
						|
    free(signal);
 | 
						|
}
 | 
						|
 | 
						|
bool digital_signal_append(DigitalSignal* signal_a, DigitalSignal* signal_b) {
 | 
						|
    furi_assert(signal_a);
 | 
						|
    furi_assert(signal_b);
 | 
						|
 | 
						|
    if(signal_a->edges_max_cnt < signal_a->edge_cnt + signal_b->edge_cnt) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    /* in case there are no edges in our target signal, the signal to append makes the rules */
 | 
						|
    if(!signal_a->edge_cnt) {
 | 
						|
        signal_a->start_level = signal_b->start_level;
 | 
						|
    }
 | 
						|
    bool end_level = signal_a->start_level;
 | 
						|
    if(signal_a->edge_cnt) {
 | 
						|
        end_level = signal_a->start_level ^ !(signal_a->edge_cnt % 2);
 | 
						|
    }
 | 
						|
    uint8_t start_copy = 0;
 | 
						|
    if(end_level == signal_b->start_level) {
 | 
						|
        if(signal_a->edge_cnt) {
 | 
						|
            signal_a->edge_timings[signal_a->edge_cnt - 1] += signal_b->edge_timings[0];
 | 
						|
            start_copy += 1;
 | 
						|
        } else {
 | 
						|
            signal_a->edge_timings[signal_a->edge_cnt] += signal_b->edge_timings[0];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for(size_t i = 0; i < signal_b->edge_cnt - start_copy; i++) {
 | 
						|
        signal_a->edge_timings[signal_a->edge_cnt + i] = signal_b->edge_timings[start_copy + i];
 | 
						|
    }
 | 
						|
    signal_a->edge_cnt += signal_b->edge_cnt - start_copy;
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
bool digital_signal_get_start_level(DigitalSignal* signal) {
 | 
						|
    furi_assert(signal);
 | 
						|
 | 
						|
    return signal->start_level;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t digital_signal_get_edges_cnt(DigitalSignal* signal) {
 | 
						|
    furi_assert(signal);
 | 
						|
 | 
						|
    return signal->edge_cnt;
 | 
						|
}
 | 
						|
 | 
						|
void digital_signal_add(DigitalSignal* signal, uint32_t ticks) {
 | 
						|
    furi_assert(signal);
 | 
						|
    furi_assert(signal->edge_cnt < signal->edges_max_cnt);
 | 
						|
 | 
						|
    signal->edge_timings[signal->edge_cnt++] = ticks;
 | 
						|
}
 | 
						|
 | 
						|
void digital_signal_add_pulse(DigitalSignal* signal, uint32_t ticks, bool level) {
 | 
						|
    furi_assert(signal);
 | 
						|
    furi_assert(signal->edge_cnt < signal->edges_max_cnt);
 | 
						|
 | 
						|
    /* virgin signal? add it as the only level */
 | 
						|
    if(signal->edge_cnt == 0) {
 | 
						|
        signal->start_level = level;
 | 
						|
        signal->edge_timings[signal->edge_cnt++] = ticks;
 | 
						|
    } else {
 | 
						|
        bool end_level = signal->start_level ^ !(signal->edge_cnt % 2);
 | 
						|
 | 
						|
        if(level != end_level) {
 | 
						|
            signal->edge_timings[signal->edge_cnt++] = ticks;
 | 
						|
        } else {
 | 
						|
            signal->edge_timings[signal->edge_cnt - 1] += ticks;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
uint32_t digital_signal_get_edge(DigitalSignal* signal, uint32_t edge_num) {
 | 
						|
    furi_assert(signal);
 | 
						|
    furi_assert(edge_num < signal->edge_cnt);
 | 
						|
 | 
						|
    return signal->edge_timings[edge_num];
 | 
						|
}
 | 
						|
 | 
						|
void digital_signal_prepare_arr(DigitalSignal* signal) {
 | 
						|
    furi_assert(signal);
 | 
						|
 | 
						|
    DigitalSignalInternals* internals = signal->internals;
 | 
						|
 | 
						|
    /* set up signal polarities */
 | 
						|
    if(internals->gpio) {
 | 
						|
        uint32_t bit_set = internals->gpio->pin;
 | 
						|
        uint32_t bit_reset = internals->gpio->pin << 16;
 | 
						|
 | 
						|
#ifdef DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN
 | 
						|
        bit_set |= DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN.pin;
 | 
						|
        bit_reset |= DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN.pin << 16;
 | 
						|
#endif
 | 
						|
 | 
						|
        if(signal->start_level) {
 | 
						|
            internals->gpio_buff[0] = bit_set;
 | 
						|
            internals->gpio_buff[1] = bit_reset;
 | 
						|
        } else {
 | 
						|
            internals->gpio_buff[0] = bit_reset;
 | 
						|
            internals->gpio_buff[1] = bit_set;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* set up edge timings */
 | 
						|
    internals->reload_reg_entries = 0;
 | 
						|
 | 
						|
    for(size_t pos = 0; pos < signal->edge_cnt; pos++) {
 | 
						|
        uint32_t pulse_duration = signal->edge_timings[pos] + internals->reload_reg_remainder;
 | 
						|
        if(pulse_duration < 10 || pulse_duration > 10000000) {
 | 
						|
            FURI_LOG_D(
 | 
						|
                TAG,
 | 
						|
                "[prepare] pulse_duration out of range: %lu = %lu * %llu",
 | 
						|
                pulse_duration,
 | 
						|
                signal->edge_timings[pos],
 | 
						|
                internals->factor);
 | 
						|
            pulse_duration = 100;
 | 
						|
        }
 | 
						|
        uint32_t pulse_ticks = (pulse_duration + T_TIM_DIV2) / T_TIM;
 | 
						|
        internals->reload_reg_remainder = pulse_duration - (pulse_ticks * T_TIM);
 | 
						|
 | 
						|
        if(pulse_ticks > 1) {
 | 
						|
            signal->reload_reg_buff[internals->reload_reg_entries++] = pulse_ticks - 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void digital_signal_stop_dma() {
 | 
						|
    LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_1);
 | 
						|
    LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_2);
 | 
						|
    LL_DMA_ClearFlag_TC1(DMA1);
 | 
						|
    LL_DMA_ClearFlag_TC2(DMA1);
 | 
						|
}
 | 
						|
 | 
						|
static void digital_signal_stop_timer() {
 | 
						|
    LL_TIM_DisableCounter(TIM2);
 | 
						|
    LL_TIM_DisableUpdateEvent(TIM2);
 | 
						|
    LL_TIM_DisableDMAReq_UPDATE(TIM2);
 | 
						|
 | 
						|
    furi_hal_bus_disable(FuriHalBusTIM2);
 | 
						|
}
 | 
						|
 | 
						|
static void digital_signal_setup_timer() {
 | 
						|
    furi_hal_bus_enable(FuriHalBusTIM2);
 | 
						|
 | 
						|
    LL_TIM_SetCounterMode(TIM2, LL_TIM_COUNTERMODE_UP);
 | 
						|
    LL_TIM_SetClockDivision(TIM2, LL_TIM_CLOCKDIVISION_DIV1);
 | 
						|
    LL_TIM_SetPrescaler(TIM2, 0);
 | 
						|
    LL_TIM_SetAutoReload(TIM2, SEQ_TIMER_MAX);
 | 
						|
    LL_TIM_SetCounter(TIM2, 0);
 | 
						|
}
 | 
						|
 | 
						|
static void digital_signal_start_timer() {
 | 
						|
    LL_TIM_EnableCounter(TIM2);
 | 
						|
    LL_TIM_EnableUpdateEvent(TIM2);
 | 
						|
    LL_TIM_EnableDMAReq_UPDATE(TIM2);
 | 
						|
    LL_TIM_GenerateEvent_UPDATE(TIM2);
 | 
						|
}
 | 
						|
 | 
						|
static bool digital_signal_setup_dma(DigitalSignal* signal) {
 | 
						|
    furi_assert(signal);
 | 
						|
    DigitalSignalInternals* internals = signal->internals;
 | 
						|
 | 
						|
    if(!signal->internals->reload_reg_entries) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    digital_signal_stop_dma();
 | 
						|
 | 
						|
    internals->dma_config_gpio.MemoryOrM2MDstAddress = (uint32_t)internals->gpio_buff;
 | 
						|
    internals->dma_config_gpio.PeriphOrM2MSrcAddress = (uint32_t) & (internals->gpio->port->BSRR);
 | 
						|
    internals->dma_config_timer.MemoryOrM2MDstAddress = (uint32_t)signal->reload_reg_buff;
 | 
						|
    internals->dma_config_timer.NbData = signal->internals->reload_reg_entries;
 | 
						|
 | 
						|
    /* set up DMA channel 1 and 2 for GPIO and timer copy operations */
 | 
						|
    LL_DMA_Init(DMA1, LL_DMA_CHANNEL_1, &internals->dma_config_gpio);
 | 
						|
    LL_DMA_Init(DMA1, LL_DMA_CHANNEL_2, &internals->dma_config_timer);
 | 
						|
 | 
						|
    /* enable both DMA channels */
 | 
						|
    LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
 | 
						|
    LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_2);
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
void digital_signal_send(DigitalSignal* signal, const GpioPin* gpio) {
 | 
						|
    furi_assert(signal);
 | 
						|
 | 
						|
    if(!signal->edge_cnt) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Configure gpio as output */
 | 
						|
    signal->internals->gpio = gpio;
 | 
						|
    furi_hal_gpio_init(
 | 
						|
        signal->internals->gpio, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh);
 | 
						|
 | 
						|
    digital_signal_prepare_arr(signal);
 | 
						|
 | 
						|
    digital_signal_setup_dma(signal);
 | 
						|
    digital_signal_setup_timer();
 | 
						|
    digital_signal_start_timer();
 | 
						|
 | 
						|
    while(!LL_DMA_IsActiveFlag_TC2(DMA1)) {
 | 
						|
    }
 | 
						|
 | 
						|
    digital_signal_stop_timer();
 | 
						|
    digital_signal_stop_dma();
 | 
						|
}
 | 
						|
 | 
						|
static void digital_sequence_alloc_signals(DigitalSequence* sequence, uint32_t size) {
 | 
						|
    sequence->signals_size = size;
 | 
						|
    sequence->signals = malloc(sequence->signals_size * sizeof(DigitalSignal*));
 | 
						|
}
 | 
						|
 | 
						|
static void digital_sequence_alloc_sequence(DigitalSequence* sequence, uint32_t size) {
 | 
						|
    sequence->sequence_used = 0;
 | 
						|
    sequence->sequence_size = size;
 | 
						|
    sequence->sequence = malloc(sequence->sequence_size);
 | 
						|
    sequence->send_time = 0;
 | 
						|
    sequence->send_time_active = false;
 | 
						|
}
 | 
						|
 | 
						|
DigitalSequence* digital_sequence_alloc(uint32_t size, const GpioPin* gpio) {
 | 
						|
    furi_assert(gpio);
 | 
						|
 | 
						|
    DigitalSequence* sequence = malloc(sizeof(DigitalSequence));
 | 
						|
 | 
						|
    sequence->gpio = gpio;
 | 
						|
    sequence->bake = false;
 | 
						|
 | 
						|
    sequence->dma_buffer = malloc(sizeof(struct ReloadBuffer));
 | 
						|
    sequence->dma_buffer->size = RINGBUFFER_SIZE;
 | 
						|
    sequence->dma_buffer->buffer = malloc(sequence->dma_buffer->size * sizeof(uint32_t));
 | 
						|
 | 
						|
    sequence->dma_config_gpio.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
 | 
						|
    sequence->dma_config_gpio.Mode = LL_DMA_MODE_CIRCULAR;
 | 
						|
    sequence->dma_config_gpio.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
 | 
						|
    sequence->dma_config_gpio.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
 | 
						|
    sequence->dma_config_gpio.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
 | 
						|
    sequence->dma_config_gpio.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
 | 
						|
    sequence->dma_config_gpio.NbData = 2;
 | 
						|
    sequence->dma_config_gpio.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
 | 
						|
    sequence->dma_config_gpio.Priority = LL_DMA_PRIORITY_VERYHIGH;
 | 
						|
 | 
						|
    sequence->dma_config_timer.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
 | 
						|
    sequence->dma_config_timer.Mode = LL_DMA_MODE_CIRCULAR;
 | 
						|
    sequence->dma_config_timer.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
 | 
						|
    sequence->dma_config_timer.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
 | 
						|
    sequence->dma_config_timer.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
 | 
						|
    sequence->dma_config_timer.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
 | 
						|
    sequence->dma_config_timer.PeriphOrM2MSrcAddress = (uint32_t) & (TIM2->ARR);
 | 
						|
    sequence->dma_config_timer.MemoryOrM2MDstAddress = (uint32_t)sequence->dma_buffer->buffer;
 | 
						|
    sequence->dma_config_timer.NbData = sequence->dma_buffer->size;
 | 
						|
    sequence->dma_config_timer.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
 | 
						|
    sequence->dma_config_timer.Priority = LL_DMA_PRIORITY_HIGH;
 | 
						|
 | 
						|
    digital_sequence_alloc_signals(sequence, SEQUENCE_SIGNALS_SIZE);
 | 
						|
    digital_sequence_alloc_sequence(sequence, size);
 | 
						|
 | 
						|
    return sequence;
 | 
						|
}
 | 
						|
 | 
						|
void digital_sequence_free(DigitalSequence* sequence) {
 | 
						|
    furi_assert(sequence);
 | 
						|
 | 
						|
    free(sequence->signals);
 | 
						|
    free(sequence->sequence);
 | 
						|
    free(sequence->dma_buffer->buffer);
 | 
						|
    free(sequence->dma_buffer);
 | 
						|
    free(sequence);
 | 
						|
}
 | 
						|
 | 
						|
void digital_sequence_set_signal(
 | 
						|
    DigitalSequence* sequence,
 | 
						|
    uint8_t signal_index,
 | 
						|
    DigitalSignal* signal) {
 | 
						|
    furi_assert(sequence);
 | 
						|
    furi_assert(signal);
 | 
						|
    furi_assert(signal_index < sequence->signals_size);
 | 
						|
 | 
						|
    sequence->signals[signal_index] = signal;
 | 
						|
    signal->internals->gpio = sequence->gpio;
 | 
						|
    signal->internals->reload_reg_remainder = 0;
 | 
						|
 | 
						|
    digital_signal_prepare_arr(signal);
 | 
						|
}
 | 
						|
 | 
						|
void digital_sequence_set_sendtime(DigitalSequence* sequence, uint32_t send_time) {
 | 
						|
    furi_assert(sequence);
 | 
						|
 | 
						|
    sequence->send_time = send_time;
 | 
						|
    sequence->send_time_active = true;
 | 
						|
}
 | 
						|
 | 
						|
void digital_sequence_add(DigitalSequence* sequence, uint8_t signal_index) {
 | 
						|
    furi_assert(sequence);
 | 
						|
    furi_assert(signal_index < sequence->signals_size);
 | 
						|
 | 
						|
    if(sequence->sequence_used >= sequence->sequence_size) {
 | 
						|
        sequence->sequence_size += SEQUENCE_SIZE_REALLOCATE_INCREMENT;
 | 
						|
        sequence->sequence = realloc(sequence->sequence, sequence->sequence_size); //-V701
 | 
						|
        furi_assert(sequence->sequence);
 | 
						|
    }
 | 
						|
 | 
						|
    sequence->sequence[sequence->sequence_used++] = signal_index;
 | 
						|
}
 | 
						|
 | 
						|
static bool digital_sequence_setup_dma(DigitalSequence* sequence) {
 | 
						|
    furi_assert(sequence);
 | 
						|
 | 
						|
    digital_signal_stop_dma();
 | 
						|
 | 
						|
    sequence->dma_config_gpio.MemoryOrM2MDstAddress = (uint32_t)sequence->gpio_buff;
 | 
						|
    sequence->dma_config_gpio.PeriphOrM2MSrcAddress = (uint32_t) & (sequence->gpio->port->BSRR);
 | 
						|
 | 
						|
    /* set up DMA channel 1 and 2 for GPIO and timer copy operations */
 | 
						|
    LL_DMA_Init(DMA1, LL_DMA_CHANNEL_1, &sequence->dma_config_gpio);
 | 
						|
    LL_DMA_Init(DMA1, LL_DMA_CHANNEL_2, &sequence->dma_config_timer);
 | 
						|
 | 
						|
    /* enable both DMA channels */
 | 
						|
    LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
 | 
						|
    LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_2);
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
static DigitalSignal* digital_sequence_bake(DigitalSequence* sequence) {
 | 
						|
    furi_assert(sequence);
 | 
						|
 | 
						|
    uint32_t edges = 0;
 | 
						|
 | 
						|
    for(uint32_t pos = 0; pos < sequence->sequence_used; pos++) {
 | 
						|
        uint8_t signal_index = sequence->sequence[pos];
 | 
						|
        DigitalSignal* sig = sequence->signals[signal_index];
 | 
						|
 | 
						|
        edges += sig->edge_cnt;
 | 
						|
    }
 | 
						|
 | 
						|
    DigitalSignal* ret = digital_signal_alloc(edges);
 | 
						|
 | 
						|
    for(uint32_t pos = 0; pos < sequence->sequence_used; pos++) {
 | 
						|
        uint8_t signal_index = sequence->sequence[pos];
 | 
						|
        DigitalSignal* sig = sequence->signals[signal_index];
 | 
						|
 | 
						|
        digital_signal_append(ret, sig);
 | 
						|
    }
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void digital_sequence_finish(DigitalSequence* sequence) {
 | 
						|
    struct ReloadBuffer* dma_buffer = sequence->dma_buffer;
 | 
						|
 | 
						|
    if(dma_buffer->dma_active) {
 | 
						|
        uint32_t prev_timer = DWT->CYCCNT;
 | 
						|
        do {
 | 
						|
            /* we are finished, when the DMA transferred the SEQ_TIMER_MAX marker */
 | 
						|
            if(TIM2->ARR == SEQ_TIMER_MAX) {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            if(DWT->CYCCNT - prev_timer > SEQ_LOCK_WAIT_TICKS) {
 | 
						|
                dma_buffer->read_pos =
 | 
						|
                    RINGBUFFER_SIZE - LL_DMA_GetDataLength(DMA1, LL_DMA_CHANNEL_2);
 | 
						|
                FURI_LOG_D(
 | 
						|
                    TAG,
 | 
						|
                    "[SEQ] hung %lu ms in finish (ARR 0x%08lx, read %lu, write %lu)",
 | 
						|
                    SEQ_LOCK_WAIT_MS,
 | 
						|
                    TIM2->ARR,
 | 
						|
                    dma_buffer->read_pos,
 | 
						|
                    dma_buffer->write_pos);
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        } while(1);
 | 
						|
    }
 | 
						|
 | 
						|
    digital_signal_stop_timer();
 | 
						|
    digital_signal_stop_dma();
 | 
						|
}
 | 
						|
 | 
						|
static void digital_sequence_queue_pulse(DigitalSequence* sequence, uint32_t length) {
 | 
						|
    struct ReloadBuffer* dma_buffer = sequence->dma_buffer;
 | 
						|
 | 
						|
    if(dma_buffer->dma_active) {
 | 
						|
        uint32_t prev_timer = DWT->CYCCNT;
 | 
						|
        do {
 | 
						|
            dma_buffer->read_pos = RINGBUFFER_SIZE - LL_DMA_GetDataLength(DMA1, LL_DMA_CHANNEL_2);
 | 
						|
 | 
						|
            uint32_t free =
 | 
						|
                (RINGBUFFER_SIZE + dma_buffer->read_pos - dma_buffer->write_pos) % RINGBUFFER_SIZE;
 | 
						|
 | 
						|
            if(free > 2) {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
 | 
						|
            if(DWT->CYCCNT - prev_timer > SEQ_LOCK_WAIT_TICKS) {
 | 
						|
                FURI_LOG_D(
 | 
						|
                    TAG,
 | 
						|
                    "[SEQ] hung %lu ms in queue (ARR 0x%08lx, read %lu, write %lu)",
 | 
						|
                    SEQ_LOCK_WAIT_MS,
 | 
						|
                    TIM2->ARR,
 | 
						|
                    dma_buffer->read_pos,
 | 
						|
                    dma_buffer->write_pos);
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            if(TIM2->ARR == SEQ_TIMER_MAX) {
 | 
						|
                FURI_LOG_D(
 | 
						|
                    TAG,
 | 
						|
                    "[SEQ] buffer underrun in queue (ARR 0x%08lx, read %lu, write %lu)",
 | 
						|
                    TIM2->ARR,
 | 
						|
                    dma_buffer->read_pos,
 | 
						|
                    dma_buffer->write_pos);
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        } while(1);
 | 
						|
    }
 | 
						|
 | 
						|
    dma_buffer->buffer[dma_buffer->write_pos] = length;
 | 
						|
    dma_buffer->write_pos++;
 | 
						|
    dma_buffer->write_pos %= RINGBUFFER_SIZE;
 | 
						|
    dma_buffer->buffer[dma_buffer->write_pos] = SEQ_TIMER_MAX;
 | 
						|
}
 | 
						|
 | 
						|
bool digital_sequence_send(DigitalSequence* sequence) {
 | 
						|
    furi_assert(sequence);
 | 
						|
 | 
						|
    struct ReloadBuffer* dma_buffer = sequence->dma_buffer;
 | 
						|
 | 
						|
    furi_hal_gpio_init(sequence->gpio, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh);
 | 
						|
#ifdef DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN
 | 
						|
    furi_hal_gpio_init(
 | 
						|
        &DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh);
 | 
						|
#endif
 | 
						|
 | 
						|
    if(sequence->bake) {
 | 
						|
        DigitalSignal* sig = digital_sequence_bake(sequence);
 | 
						|
 | 
						|
        digital_signal_send(sig, sequence->gpio);
 | 
						|
        digital_signal_free(sig);
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if(!sequence->sequence_used) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    int32_t remainder = 0;
 | 
						|
    uint32_t trade_for_next = 0;
 | 
						|
    uint32_t seq_pos_next = 1;
 | 
						|
 | 
						|
    dma_buffer->dma_active = false;
 | 
						|
    dma_buffer->buffer[0] = SEQ_TIMER_MAX;
 | 
						|
    dma_buffer->read_pos = 0;
 | 
						|
    dma_buffer->write_pos = 0;
 | 
						|
 | 
						|
    /* already prepare the current signal pointer */
 | 
						|
    DigitalSignal* sig = sequence->signals[sequence->sequence[0]];
 | 
						|
    DigitalSignal* sig_next = NULL;
 | 
						|
    /* re-use the GPIO buffer from the first signal */
 | 
						|
    sequence->gpio_buff = sig->internals->gpio_buff;
 | 
						|
 | 
						|
    FURI_CRITICAL_ENTER();
 | 
						|
 | 
						|
    while(sig) {
 | 
						|
        bool last_signal = (seq_pos_next >= sequence->sequence_used);
 | 
						|
 | 
						|
        if(!last_signal) {
 | 
						|
            sig_next = sequence->signals[sequence->sequence[seq_pos_next++]];
 | 
						|
        }
 | 
						|
 | 
						|
        for(uint32_t pulse_pos = 0; pulse_pos < sig->internals->reload_reg_entries; pulse_pos++) {
 | 
						|
            bool last_pulse = ((pulse_pos + 1) >= sig->internals->reload_reg_entries);
 | 
						|
            uint32_t pulse_length = sig->reload_reg_buff[pulse_pos] + trade_for_next;
 | 
						|
 | 
						|
            trade_for_next = 0;
 | 
						|
 | 
						|
            /* when we are too late more than half a tick, make the first edge temporarily longer */
 | 
						|
            if(remainder >= T_TIM_DIV2) {
 | 
						|
                remainder -= T_TIM;
 | 
						|
                pulse_length += 1;
 | 
						|
            }
 | 
						|
 | 
						|
            /* last pulse in current signal and have a next signal? */
 | 
						|
            if(last_pulse && sig_next) {
 | 
						|
                /* when a signal ends with the same level as the next signal begins, let the next signal generate the whole pulse.
 | 
						|
                   beware, we do not want the level after the last edge, but the last level before that edge */
 | 
						|
                bool end_level = sig->start_level ^ ((sig->edge_cnt % 2) == 0);
 | 
						|
 | 
						|
                /* if they have the same level, pass the duration to the next pulse(s) */
 | 
						|
                if(end_level == sig_next->start_level) {
 | 
						|
                    trade_for_next = pulse_length;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            /* if it was decided, that the next signal's first pulse shall also handle our "length", then do not queue here */
 | 
						|
            if(!trade_for_next) {
 | 
						|
                digital_sequence_queue_pulse(sequence, pulse_length);
 | 
						|
 | 
						|
                if(!dma_buffer->dma_active) {
 | 
						|
                    /* start transmission when buffer was filled enough */
 | 
						|
                    bool start_send = sequence->dma_buffer->write_pos >= (RINGBUFFER_SIZE - 2);
 | 
						|
 | 
						|
                    /* or it was the last pulse */
 | 
						|
                    if(last_pulse && last_signal) {
 | 
						|
                        start_send = true;
 | 
						|
                    }
 | 
						|
 | 
						|
                    /* start transmission */
 | 
						|
                    if(start_send) {
 | 
						|
                        digital_sequence_setup_dma(sequence);
 | 
						|
                        digital_signal_setup_timer();
 | 
						|
 | 
						|
                        /* if the send time is specified, wait till the core timer passed beyond that time */
 | 
						|
                        if(sequence->send_time_active) {
 | 
						|
                            sequence->send_time_active = false;
 | 
						|
                            while(sequence->send_time - DWT->CYCCNT < 0x80000000) {
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        digital_signal_start_timer();
 | 
						|
                        dma_buffer->dma_active = true;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        remainder += sig->internals->reload_reg_remainder;
 | 
						|
        sig = sig_next;
 | 
						|
        sig_next = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* wait until last dma transaction was finished */
 | 
						|
    FURI_CRITICAL_EXIT();
 | 
						|
    digital_sequence_finish(sequence);
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
void digital_sequence_clear(DigitalSequence* sequence) {
 | 
						|
    furi_assert(sequence);
 | 
						|
 | 
						|
    sequence->sequence_used = 0;
 | 
						|
}
 | 
						|
 | 
						|
void digital_sequence_timebase_correction(DigitalSequence* sequence, float factor) {
 | 
						|
    for(uint32_t sig_pos = 0; sig_pos < sequence->signals_size; sig_pos++) {
 | 
						|
        DigitalSignal* signal = sequence->signals[sig_pos];
 | 
						|
 | 
						|
        if(signal) {
 | 
						|
            signal->internals->factor = (uint32_t)(1024 * 1024 * factor);
 | 
						|
            digital_signal_prepare_arr(signal);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 |