 9bf11d9fd2
			
		
	
	
		9bf11d9fd2
		
			
		
	
	
	
	
		
			
			* fbt: assets builder for apps WIP * fbt: automatically building private fap assets * docs: details on how to use image assets * fbt: renamed fap_assets -> fap_icons * fbt: support for fap_extbuild field * docs: info on fap_extbuild * fbt: added --proxy-env parame ter * fbt: made firmware_cdb & updater_cdb targets always available * fbt: renamed fap_icons -> fap_icon_assets * fbt: deprecated firmware_* target names for faps; new alias is "fap_APPID" * fbt: changed intermediate file locations for external apps * fbt: support for fap_private_libs; docs: updates * restored mbedtls as global lib * scripts: lint.py: skip "lib" subfolder * fbt: Sanity checks for building advanced faps as part of fw * docs: info on fap_private_libs; fbt: optimized *.fam indexing * fbt: cleanup; samples: added sample_icons app * fbt: moved example app to applications/examples * linter fix * docs: readme fixes * added applications/examples/application.fam stub * docs: more info on private libs Co-authored-by: あく <alleteam@gmail.com>
		
			
				
	
	
		
			321 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			321 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| //-----------------------------------------------------------------------------
 | ||
| // Borrowed initially from https://github.com/holiman/loclass
 | ||
| // Copyright (C) 2014 Martin Holst Swende
 | ||
| // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
 | ||
| //
 | ||
| // This program is free software: you can redistribute it and/or modify
 | ||
| // it under the terms of the GNU General Public License as published by
 | ||
| // the Free Software Foundation, either version 3 of the License, or
 | ||
| // (at your option) any later version.
 | ||
| //
 | ||
| // This program is distributed in the hope that it will be useful,
 | ||
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | ||
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | ||
| // GNU General Public License for more details.
 | ||
| //
 | ||
| // See LICENSE.txt for the text of the license.
 | ||
| //-----------------------------------------------------------------------------
 | ||
| // WARNING
 | ||
| //
 | ||
| // THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
 | ||
| //
 | ||
| // USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
 | ||
| // PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
 | ||
| // AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
 | ||
| //
 | ||
| // THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
 | ||
| //-----------------------------------------------------------------------------
 | ||
| // It is a reconstruction of the cipher engine used in iClass, and RFID techology.
 | ||
| //
 | ||
| // The implementation is based on the work performed by
 | ||
| // Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
 | ||
| // Milosch Meriac in the paper "Dismantling IClass".
 | ||
| //-----------------------------------------------------------------------------
 | ||
| 
 | ||
| /**
 | ||
| From "Dismantling iclass":
 | ||
|     This section describes in detail the built-in key diversification algorithm of iClass.
 | ||
|     Besides the obvious purpose of deriving a card key from a master key, this
 | ||
|     algorithm intends to circumvent weaknesses in the cipher by preventing the
 | ||
|     usage of certain ‘weak’ keys. In order to compute a diversified key, the iClass
 | ||
|     reader first encrypts the card identity id with the master key K, using single
 | ||
|     DES. The resulting ciphertext is then input to a function called loclass_hash0 which
 | ||
|     outputs the diversified key k.
 | ||
| 
 | ||
|     k = loclass_hash0(DES enc (id, K))
 | ||
| 
 | ||
|     Here the DES encryption of id with master key K outputs a cryptogram c
 | ||
|     of 64 bits. These 64 bits are divided as c = x, y, z [0] , . . . , z [7] ∈ F 82 × F 82 × (F 62 ) 8
 | ||
|     which is used as input to the loclass_hash0 function. This function introduces some
 | ||
|     obfuscation by performing a number of permutations, complement and modulo
 | ||
|     operations, see Figure 2.5. Besides that, it checks for and removes patterns like
 | ||
|     similar key bytes, which could produce a strong bias in the cipher. Finally, the
 | ||
|     output of loclass_hash0 is the diversified card key k = k [0] , . . . , k [7] ∈ (F 82 ) 8 .
 | ||
| 
 | ||
| **/
 | ||
| #include "optimized_ikeys.h"
 | ||
| 
 | ||
| #include <stdint.h>
 | ||
| #include <stdbool.h>
 | ||
| #include <inttypes.h>
 | ||
| #include <mbedtls/des.h>
 | ||
| #include "optimized_cipherutils.h"
 | ||
| 
 | ||
| static const uint8_t loclass_pi[35] = {0x0F, 0x17, 0x1B, 0x1D, 0x1E, 0x27, 0x2B, 0x2D, 0x2E,
 | ||
|                                        0x33, 0x35, 0x39, 0x36, 0x3A, 0x3C, 0x47, 0x4B, 0x4D,
 | ||
|                                        0x4E, 0x53, 0x55, 0x56, 0x59, 0x5A, 0x5C, 0x63, 0x65,
 | ||
|                                        0x66, 0x69, 0x6A, 0x6C, 0x71, 0x72, 0x74, 0x78};
 | ||
| 
 | ||
| /**
 | ||
|  * @brief The key diversification algorithm uses 6-bit bytes.
 | ||
|  * This implementation uses 64 bit uint to pack seven of them into one
 | ||
|  * variable. When they are there, they are placed as follows:
 | ||
|  * XXXX XXXX N0 .... N7, occupying the last 48 bits.
 | ||
|  *
 | ||
|  * This function picks out one from such a collection
 | ||
|  * @param all
 | ||
|  * @param n bitnumber
 | ||
|  * @return
 | ||
|  */
 | ||
| static uint8_t loclass_getSixBitByte(uint64_t c, int n) {
 | ||
|     return (c >> (42 - 6 * n)) & 0x3F;
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  * @brief Puts back a six-bit 'byte' into a uint64_t.
 | ||
|  * @param c buffer
 | ||
|  * @param z the value to place there
 | ||
|  * @param n bitnumber.
 | ||
|  */
 | ||
| static void loclass_pushbackSixBitByte(uint64_t* c, uint8_t z, int n) {
 | ||
|     //0x XXXX YYYY ZZZZ ZZZZ ZZZZ
 | ||
|     //             ^z0         ^z7
 | ||
|     //z0:  1111 1100 0000 0000
 | ||
| 
 | ||
|     uint64_t masked = z & 0x3F;
 | ||
|     uint64_t eraser = 0x3F;
 | ||
|     masked <<= 42 - 6 * n;
 | ||
|     eraser <<= 42 - 6 * n;
 | ||
| 
 | ||
|     //masked <<= 6*n;
 | ||
|     //eraser <<= 6*n;
 | ||
| 
 | ||
|     eraser = ~eraser;
 | ||
|     (*c) &= eraser;
 | ||
|     (*c) |= masked;
 | ||
| }
 | ||
| /**
 | ||
|  * @brief Swaps the z-values.
 | ||
|  * If the input value has format XYZ0Z1...Z7, the output will have the format
 | ||
|  * XYZ7Z6...Z0 instead
 | ||
|  * @param c
 | ||
|  * @return
 | ||
|  */
 | ||
| static uint64_t loclass_swapZvalues(uint64_t c) {
 | ||
|     uint64_t newz = 0;
 | ||
|     loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 0), 7);
 | ||
|     loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 1), 6);
 | ||
|     loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 2), 5);
 | ||
|     loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 3), 4);
 | ||
|     loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 4), 3);
 | ||
|     loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 5), 2);
 | ||
|     loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 6), 1);
 | ||
|     loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 7), 0);
 | ||
|     newz |= (c & 0xFFFF000000000000);
 | ||
|     return newz;
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
| * @return 4 six-bit bytes chunked into a uint64_t,as 00..00a0a1a2a3
 | ||
| */
 | ||
| static uint64_t loclass_ck(int i, int j, uint64_t z) {
 | ||
|     if(i == 1 && j == -1) {
 | ||
|         // loclass_ck(1, −1, z [0] . . . z [3] ) = z [0] . . . z [3]
 | ||
|         return z;
 | ||
|     } else if(j == -1) {
 | ||
|         // loclass_ck(i, −1, z [0] . . . z [3] ) = loclass_ck(i − 1, i − 2, z [0] . . . z [3] )
 | ||
|         return loclass_ck(i - 1, i - 2, z);
 | ||
|     }
 | ||
| 
 | ||
|     if(loclass_getSixBitByte(z, i) == loclass_getSixBitByte(z, j)) {
 | ||
|         //loclass_ck(i, j − 1, z [0] . . . z [i] ← j . . . z [3] )
 | ||
|         uint64_t newz = 0;
 | ||
|         int c;
 | ||
|         for(c = 0; c < 4; c++) {
 | ||
|             uint8_t val = loclass_getSixBitByte(z, c);
 | ||
|             if(c == i)
 | ||
|                 loclass_pushbackSixBitByte(&newz, j, c);
 | ||
|             else
 | ||
|                 loclass_pushbackSixBitByte(&newz, val, c);
 | ||
|         }
 | ||
|         return loclass_ck(i, j - 1, newz);
 | ||
|     } else {
 | ||
|         return loclass_ck(i, j - 1, z);
 | ||
|     }
 | ||
| }
 | ||
| /**
 | ||
| 
 | ||
|     Definition 8.
 | ||
|     Let the function check : (F 62 ) 8 → (F 62 ) 8 be defined as
 | ||
|     check(z [0] . . . z [7] ) = loclass_ck(3, 2, z [0] . . . z [3] ) · loclass_ck(3, 2, z [4] . . . z [7] )
 | ||
| 
 | ||
|     where loclass_ck : N × N × (F 62 ) 4 → (F 62 ) 4 is defined as
 | ||
| 
 | ||
|         loclass_ck(1, −1, z [0] . . . z [3] ) = z [0] . . . z [3]
 | ||
|         loclass_ck(i, −1, z [0] . . . z [3] ) = loclass_ck(i − 1, i − 2, z [0] . . . z [3] )
 | ||
|         loclass_ck(i, j, z [0] . . . z [3] ) =
 | ||
|         loclass_ck(i, j − 1, z [0] . . . z [i] ← j . . . z [3] ),  if z [i] = z [j] ;
 | ||
|         loclass_ck(i, j − 1, z [0] . . . z [3] ), otherwise
 | ||
| 
 | ||
|     otherwise.
 | ||
| **/
 | ||
| 
 | ||
| static uint64_t loclass_check(uint64_t z) {
 | ||
|     //These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
 | ||
| 
 | ||
|     // loclass_ck(3, 2, z [0] . . . z [3] )
 | ||
|     uint64_t ck1 = loclass_ck(3, 2, z);
 | ||
| 
 | ||
|     // loclass_ck(3, 2, z [4] . . . z [7] )
 | ||
|     uint64_t ck2 = loclass_ck(3, 2, z << 24);
 | ||
| 
 | ||
|     //The loclass_ck function will place the values
 | ||
|     // in the middle of z.
 | ||
|     ck1 &= 0x00000000FFFFFF000000;
 | ||
|     ck2 &= 0x00000000FFFFFF000000;
 | ||
| 
 | ||
|     return ck1 | ck2 >> 24;
 | ||
| }
 | ||
| 
 | ||
| static void loclass_permute(
 | ||
|     LoclassBitstreamIn_t* p_in,
 | ||
|     uint64_t z,
 | ||
|     int l,
 | ||
|     int r,
 | ||
|     LoclassBitstreamOut_t* out) {
 | ||
|     if(loclass_bitsLeft(p_in) == 0) return;
 | ||
| 
 | ||
|     bool pn = loclass_tailBit(p_in);
 | ||
|     if(pn) { // pn = 1
 | ||
|         uint8_t zl = loclass_getSixBitByte(z, l);
 | ||
| 
 | ||
|         loclass_push6bits(out, zl + 1);
 | ||
|         loclass_permute(p_in, z, l + 1, r, out);
 | ||
|     } else { // otherwise
 | ||
|         uint8_t zr = loclass_getSixBitByte(z, r);
 | ||
| 
 | ||
|         loclass_push6bits(out, zr);
 | ||
|         loclass_permute(p_in, z, l, r + 1, out);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  * @brief
 | ||
|  *Definition 11. Let the function loclass_hash0 : F 82 × F 82 × (F 62 ) 8 → (F 82 ) 8 be defined as
 | ||
|  *  loclass_hash0(x, y, z [0] . . . z [7] ) = k [0] . . . k [7] where
 | ||
|  * z'[i] = (z[i] mod (63-i)) + i      i =  0...3
 | ||
|  * z'[i+4] = (z[i+4] mod (64-i)) + i  i =  0...3
 | ||
|  * ẑ = check(z');
 | ||
|  * @param c
 | ||
|  * @param k this is where the diversified key is put (should be 8 bytes)
 | ||
|  * @return
 | ||
|  */
 | ||
| void loclass_hash0(uint64_t c, uint8_t k[8]) {
 | ||
|     c = loclass_swapZvalues(c);
 | ||
| 
 | ||
|     //These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
 | ||
|     // x = 8 bits
 | ||
|     // y = 8 bits
 | ||
|     // z0-z7 6 bits each : 48 bits
 | ||
|     uint8_t x = (c & 0xFF00000000000000) >> 56;
 | ||
|     uint8_t y = (c & 0x00FF000000000000) >> 48;
 | ||
|     uint64_t zP = 0;
 | ||
| 
 | ||
|     for(int n = 0; n < 4; n++) {
 | ||
|         uint8_t zn = loclass_getSixBitByte(c, n);
 | ||
|         uint8_t zn4 = loclass_getSixBitByte(c, n + 4);
 | ||
|         uint8_t _zn = (zn % (63 - n)) + n;
 | ||
|         uint8_t _zn4 = (zn4 % (64 - n)) + n;
 | ||
|         loclass_pushbackSixBitByte(&zP, _zn, n);
 | ||
|         loclass_pushbackSixBitByte(&zP, _zn4, n + 4);
 | ||
|     }
 | ||
| 
 | ||
|     uint64_t zCaret = loclass_check(zP);
 | ||
|     uint8_t p = loclass_pi[x % 35];
 | ||
| 
 | ||
|     if(x & 1) //Check if x7 is 1
 | ||
|         p = ~p;
 | ||
| 
 | ||
|     LoclassBitstreamIn_t p_in = {&p, 8, 0};
 | ||
|     uint8_t outbuffer[] = {0, 0, 0, 0, 0, 0, 0, 0};
 | ||
|     LoclassBitstreamOut_t out = {outbuffer, 0, 0};
 | ||
|     loclass_permute(&p_in, zCaret, 0, 4, &out); //returns 48 bits? or 6 8-bytes
 | ||
| 
 | ||
|     //Out is now a buffer containing six-bit bytes, should be 48 bits
 | ||
|     // if all went well
 | ||
|     //Shift z-values down onto the lower segment
 | ||
| 
 | ||
|     uint64_t zTilde = loclass_x_bytes_to_num(outbuffer, sizeof(outbuffer));
 | ||
| 
 | ||
|     zTilde >>= 16;
 | ||
| 
 | ||
|     for(int i = 0; i < 8; i++) {
 | ||
|         // the key on index i is first a bit from y
 | ||
|         // then six bits from z,
 | ||
|         // then a bit from p
 | ||
| 
 | ||
|         // Init with zeroes
 | ||
|         k[i] = 0;
 | ||
|         // First, place yi leftmost in k
 | ||
|         //k[i] |= (y  << i) & 0x80 ;
 | ||
| 
 | ||
|         // First, place y(7-i) leftmost in k
 | ||
|         k[i] |= (y << (7 - i)) & 0x80;
 | ||
| 
 | ||
|         uint8_t zTilde_i = loclass_getSixBitByte(zTilde, i);
 | ||
|         // zTildeI is now on the form 00XXXXXX
 | ||
|         // with one leftshift, it'll be
 | ||
|         // 0XXXXXX0
 | ||
|         // So after leftshift, we can OR it into k
 | ||
|         // However, when doing complement, we need to
 | ||
|         // again MASK 0XXXXXX0 (0x7E)
 | ||
|         zTilde_i <<= 1;
 | ||
| 
 | ||
|         //Finally, add bit from p or p-mod
 | ||
|         //Shift bit i into rightmost location (mask only after complement)
 | ||
|         uint8_t p_i = p >> i & 0x1;
 | ||
| 
 | ||
|         if(k[i]) { // yi = 1
 | ||
|             k[i] |= ~zTilde_i & 0x7E;
 | ||
|             k[i] |= p_i & 1;
 | ||
|             k[i] += 1;
 | ||
| 
 | ||
|         } else { // otherwise
 | ||
|             k[i] |= zTilde_i & 0x7E;
 | ||
|             k[i] |= (~p_i) & 1;
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| /**
 | ||
|  * @brief Performs Elite-class key diversification
 | ||
|  * @param csn
 | ||
|  * @param key
 | ||
|  * @param div_key
 | ||
|  */
 | ||
| void loclass_diversifyKey(uint8_t* csn, const uint8_t* key, uint8_t* div_key) {
 | ||
|     mbedtls_des_context loclass_ctx_enc;
 | ||
| 
 | ||
|     // Prepare the DES key
 | ||
|     mbedtls_des_setkey_enc(&loclass_ctx_enc, key);
 | ||
| 
 | ||
|     uint8_t crypted_csn[8] = {0};
 | ||
| 
 | ||
|     // Calculate DES(CSN, KEY)
 | ||
|     mbedtls_des_crypt_ecb(&loclass_ctx_enc, csn, crypted_csn);
 | ||
| 
 | ||
|     //Calculate HASH0(DES))
 | ||
|     uint64_t c_csn = loclass_x_bytes_to_num(crypted_csn, sizeof(crypted_csn));
 | ||
| 
 | ||
|     loclass_hash0(c_csn, div_key);
 | ||
| }
 |