* Namespace loclass library * Lib: const for immutable variables and bss cleanup Co-authored-by: あく <alleteam@gmail.com>
		
			
				
	
	
		
			314 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			314 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| //-----------------------------------------------------------------------------
 | |
| // Borrowed initially from https://github.com/holiman/loclass
 | |
| // Copyright (C) 2014 Martin Holst Swende
 | |
| // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
 | |
| //
 | |
| // This program is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // This program is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| // GNU General Public License for more details.
 | |
| //
 | |
| // See LICENSE.txt for the text of the license.
 | |
| //-----------------------------------------------------------------------------
 | |
| // WARNING
 | |
| //
 | |
| // THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
 | |
| //
 | |
| // USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
 | |
| // PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
 | |
| // AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
 | |
| //
 | |
| // THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
 | |
| //-----------------------------------------------------------------------------
 | |
| // It is a reconstruction of the cipher engine used in iClass, and RFID techology.
 | |
| //
 | |
| // The implementation is based on the work performed by
 | |
| // Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
 | |
| // Milosch Meriac in the paper "Dismantling IClass".
 | |
| //-----------------------------------------------------------------------------
 | |
| /*
 | |
|   This file contains an optimized version of the MAC-calculation algorithm. Some measurements on
 | |
|   a std laptop showed it runs in about 1/3 of the time:
 | |
| 
 | |
|     Std: 0.428962
 | |
|     Opt: 0.151609
 | |
| 
 | |
|   Additionally, it is self-reliant, not requiring e.g. bitstreams from the cipherutils, thus can
 | |
|   be easily dropped into a code base.
 | |
| 
 | |
|   The optimizations have been performed in the following steps:
 | |
|   * Parameters passed by reference instead of by value.
 | |
|   * Iteration instead of recursion, un-nesting recursive loops into for-loops.
 | |
|   * Handling of bytes instead of individual bits, for less shuffling and masking
 | |
|   * Less creation of "objects", structs, and instead reuse of alloc:ed memory
 | |
|   * Inlining some functions via #define:s
 | |
| 
 | |
|   As a consequence, this implementation is less generic. Also, I haven't bothered documenting this.
 | |
|   For a thorough documentation, check out the MAC-calculation within cipher.c instead.
 | |
| 
 | |
|   -- MHS 2015
 | |
| **/
 | |
| 
 | |
| /**
 | |
| 
 | |
|   The runtime of opt_doTagMAC_2() with the MHS optimized version was 403 microseconds on Proxmark3.
 | |
|   This was still to slow for some newer readers which didn't want to wait that long.
 | |
| 
 | |
|   Further optimizations to speedup the MAC calculations:
 | |
|   * Optimized opt_Tt logic
 | |
|   * Look up table for opt_select
 | |
|   * Removing many unnecessary bit maskings (& 0x1)
 | |
|   * updating state in place instead of alternating use of a second state structure
 | |
|   * remove the necessity to reverse bits of input and output bytes
 | |
| 
 | |
|   opt_doTagMAC_2() now completes in 270 microseconds.
 | |
| 
 | |
|   -- piwi 2019
 | |
| **/
 | |
| 
 | |
| /**
 | |
|   add the possibility to do iCLASS on device only
 | |
|   -- iceman 2020
 | |
| **/
 | |
| 
 | |
| #include "optimized_cipher.h"
 | |
| #include "optimized_elite.h"
 | |
| #include "optimized_ikeys.h"
 | |
| #include "optimized_cipherutils.h"
 | |
| 
 | |
| static const uint8_t loclass_opt_select_LUT[256] = {
 | |
|     00, 03, 02, 01, 02, 03, 00, 01, 04, 07, 07, 04, 06, 07, 05, 04,
 | |
|     01, 02, 03, 00, 02, 03, 00, 01, 05, 06, 06, 05, 06, 07, 05, 04,
 | |
|     06, 05, 04, 07, 04, 05, 06, 07, 06, 05, 05, 06, 04, 05, 07, 06,
 | |
|     07, 04, 05, 06, 04, 05, 06, 07, 07, 04, 04, 07, 04, 05, 07, 06,
 | |
|     06, 05, 04, 07, 04, 05, 06, 07, 02, 01, 01, 02, 00, 01, 03, 02,
 | |
|     03, 00, 01, 02, 00, 01, 02, 03, 07, 04, 04, 07, 04, 05, 07, 06,
 | |
|     00, 03, 02, 01, 02, 03, 00, 01, 00, 03, 03, 00, 02, 03, 01, 00,
 | |
|     05, 06, 07, 04, 06, 07, 04, 05, 05, 06, 06, 05, 06, 07, 05, 04,
 | |
|     02, 01, 00, 03, 00, 01, 02, 03, 06, 05, 05, 06, 04, 05, 07, 06,
 | |
|     03, 00, 01, 02, 00, 01, 02, 03, 07, 04, 04, 07, 04, 05, 07, 06,
 | |
|     02, 01, 00, 03, 00, 01, 02, 03, 02, 01, 01, 02, 00, 01, 03, 02,
 | |
|     03, 00, 01, 02, 00, 01, 02, 03, 03, 00, 00, 03, 00, 01, 03, 02,
 | |
|     04, 07, 06, 05, 06, 07, 04, 05, 00, 03, 03, 00, 02, 03, 01, 00,
 | |
|     01, 02, 03, 00, 02, 03, 00, 01, 05, 06, 06, 05, 06, 07, 05, 04,
 | |
|     04, 07, 06, 05, 06, 07, 04, 05, 04, 07, 07, 04, 06, 07, 05, 04,
 | |
|     01, 02, 03, 00, 02, 03, 00, 01, 01, 02, 02, 01, 02, 03, 01, 00
 | |
| };
 | |
| 
 | |
| /********************** the table above has been generated with this code: ********
 | |
| #include "util.h"
 | |
| static void init_opt_select_LUT(void) {
 | |
|     for (int r = 0; r < 256; r++) {
 | |
|         uint8_t r_ls2 = r << 2;
 | |
|         uint8_t r_and_ls2 = r & r_ls2;
 | |
|         uint8_t r_or_ls2  = r | r_ls2;
 | |
|         uint8_t z0 = (r_and_ls2 >> 5) ^ ((r & ~r_ls2) >> 4) ^ ( r_or_ls2 >> 3);
 | |
|         uint8_t z1 = (r_or_ls2 >> 6) ^ ( r_or_ls2 >> 1) ^ (r >> 5) ^ r;
 | |
|         uint8_t z2 = ((r & ~r_ls2) >> 4) ^ (r_and_ls2 >> 3) ^ r;
 | |
|         loclass_opt_select_LUT[r] = (z0 & 4) | (z1 & 2) | (z2 & 1);
 | |
|     }
 | |
|     print_result("", loclass_opt_select_LUT, 256);
 | |
| }
 | |
| ***********************************************************************************/
 | |
| 
 | |
| #define loclass_opt__select(x,y,r)  (4 & (((r & (r << 2)) >> 5) ^ ((r & ~(r << 2)) >> 4) ^ ( (r | r << 2) >> 3)))\
 | |
|     |(2 & (((r | r << 2) >> 6) ^ ( (r | r << 2) >> 1) ^ (r >> 5) ^ r ^ ((x^y) << 1)))\
 | |
|     |(1 & (((r & ~(r << 2)) >> 4) ^ ((r & (r << 2)) >> 3) ^ r ^ x))
 | |
| 
 | |
| 
 | |
| static void loclass_opt_successor(const uint8_t *k, LoclassState_t *s, uint8_t y) {
 | |
|     uint16_t Tt = s->t & 0xc533;
 | |
|     Tt = Tt ^ (Tt >> 1);
 | |
|     Tt = Tt ^ (Tt >> 4);
 | |
|     Tt = Tt ^ (Tt >> 10);
 | |
|     Tt = Tt ^ (Tt >> 8);
 | |
| 
 | |
|     s->t = (s->t >> 1);
 | |
|     s->t |= (Tt ^ (s->r >> 7) ^ (s->r >> 3)) << 15;
 | |
| 
 | |
|     uint8_t opt_B = s->b;
 | |
|     opt_B ^= s->b >> 6;
 | |
|     opt_B ^= s->b >> 5;
 | |
|     opt_B ^= s->b >> 4;
 | |
| 
 | |
|     s->b = s->b >> 1;
 | |
|     s->b |= (opt_B ^ s->r) << 7;
 | |
| 
 | |
|     uint8_t opt_select = loclass_opt_select_LUT[s->r] & 0x04;
 | |
|     opt_select |= (loclass_opt_select_LUT[s->r] ^ ((Tt ^ y) << 1)) & 0x02;
 | |
|     opt_select |= (loclass_opt_select_LUT[s->r] ^ Tt) & 0x01;
 | |
| 
 | |
|     uint8_t r = s->r;
 | |
|     s->r = (k[opt_select] ^ s->b) + s->l ;
 | |
|     s->l = s->r + r;
 | |
| }
 | |
| 
 | |
| static void loclass_opt_suc(const uint8_t *k, LoclassState_t *s, const uint8_t *in, uint8_t length, bool add32Zeroes) {
 | |
|     for (int i = 0; i < length; i++) {
 | |
|         uint8_t head;
 | |
|         head = in[i];
 | |
|         loclass_opt_successor(k, s, head);
 | |
| 
 | |
|         head >>= 1;
 | |
|         loclass_opt_successor(k, s, head);
 | |
| 
 | |
|         head >>= 1;
 | |
|         loclass_opt_successor(k, s, head);
 | |
| 
 | |
|         head >>= 1;
 | |
|         loclass_opt_successor(k, s, head);
 | |
| 
 | |
|         head >>= 1;
 | |
|         loclass_opt_successor(k, s, head);
 | |
| 
 | |
|         head >>= 1;
 | |
|         loclass_opt_successor(k, s, head);
 | |
| 
 | |
|         head >>= 1;
 | |
|         loclass_opt_successor(k, s, head);
 | |
| 
 | |
|         head >>= 1;
 | |
|         loclass_opt_successor(k, s, head);
 | |
|     }
 | |
|     //For tag MAC, an additional 32 zeroes
 | |
|     if (add32Zeroes) {
 | |
|         for (int i = 0; i < 16; i++) {
 | |
|             loclass_opt_successor(k, s, 0);
 | |
|             loclass_opt_successor(k, s, 0);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void loclass_opt_output(const uint8_t *k, LoclassState_t *s,  uint8_t *buffer) {
 | |
|     for (uint8_t times = 0; times < 4; times++) {
 | |
|         uint8_t bout = 0;
 | |
|         bout |= (s->r & 0x4) >> 2;
 | |
|         loclass_opt_successor(k, s, 0);
 | |
|         bout |= (s->r & 0x4) >> 1;
 | |
|         loclass_opt_successor(k, s, 0);
 | |
|         bout |= (s->r & 0x4);
 | |
|         loclass_opt_successor(k, s, 0);
 | |
|         bout |= (s->r & 0x4) << 1;
 | |
|         loclass_opt_successor(k, s, 0);
 | |
|         bout |= (s->r & 0x4) << 2;
 | |
|         loclass_opt_successor(k, s, 0);
 | |
|         bout |= (s->r & 0x4) << 3;
 | |
|         loclass_opt_successor(k, s, 0);
 | |
|         bout |= (s->r & 0x4) << 4;
 | |
|         loclass_opt_successor(k, s, 0);
 | |
|         bout |= (s->r & 0x4) << 5;
 | |
|         loclass_opt_successor(k, s, 0);
 | |
|         buffer[times] = bout;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void loclass_opt_MAC(uint8_t *k, uint8_t *input, uint8_t *out) {
 | |
|     LoclassState_t _init  =  {
 | |
|         ((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l
 | |
|         ((k[0] ^ 0x4c) + 0x21) & 0xFF,// r
 | |
|         0x4c, // b
 | |
|         0xE012 // t
 | |
|     };
 | |
| 
 | |
|     loclass_opt_suc(k, &_init, input, 12, false);
 | |
|     loclass_opt_output(k, &_init, out);
 | |
| }
 | |
| 
 | |
| static void loclass_opt_MAC_N(uint8_t *k, uint8_t *input, uint8_t in_size, uint8_t *out) {
 | |
|     LoclassState_t _init  =  {
 | |
|         ((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l
 | |
|         ((k[0] ^ 0x4c) + 0x21) & 0xFF,// r
 | |
|         0x4c, // b
 | |
|         0xE012 // t
 | |
|     };
 | |
| 
 | |
|     loclass_opt_suc(k, &_init, input, in_size, false);
 | |
|     loclass_opt_output(k, &_init, out);
 | |
| }
 | |
| 
 | |
| void loclass_opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]) {
 | |
|     uint8_t dest [] = {0, 0, 0, 0, 0, 0, 0, 0};
 | |
|     loclass_opt_MAC(div_key_p, cc_nr_p, dest);
 | |
|     memcpy(mac, dest, 4);
 | |
| }
 | |
| 
 | |
| void loclass_opt_doReaderMAC_2(LoclassState_t _init,  uint8_t *nr, uint8_t mac[4], const uint8_t *div_key_p) {
 | |
|     loclass_opt_suc(div_key_p, &_init, nr, 4, false);
 | |
|     loclass_opt_output(div_key_p, &_init, mac);
 | |
| }
 | |
| 
 | |
| 
 | |
| void loclass_doMAC_N(uint8_t *in_p, uint8_t in_size, uint8_t *div_key_p, uint8_t mac[4]) {
 | |
|     uint8_t dest [] = {0, 0, 0, 0, 0, 0, 0, 0};
 | |
|     loclass_opt_MAC_N(div_key_p, in_p, in_size, dest);
 | |
|     memcpy(mac, dest, 4);
 | |
| }
 | |
| 
 | |
| void loclass_opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4]) {
 | |
|     LoclassState_t _init  =  {
 | |
|         ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l
 | |
|         ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r
 | |
|         0x4c, // b
 | |
|         0xE012 // t
 | |
|     };
 | |
|     loclass_opt_suc(div_key_p, &_init, cc_p, 12, true);
 | |
|     loclass_opt_output(div_key_p, &_init, mac);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * The tag MAC can be divided (both can, but no point in dividing the reader mac) into
 | |
|  * two functions, since the first 8 bytes are known, we can pre-calculate the state
 | |
|  * reached after feeding CC to the cipher.
 | |
|  * @param cc_p
 | |
|  * @param div_key_p
 | |
|  * @return the cipher state
 | |
|  */
 | |
| LoclassState_t loclass_opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p) {
 | |
|     LoclassState_t _init  =  {
 | |
|         ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l
 | |
|         ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r
 | |
|         0x4c, // b
 | |
|         0xE012 // t
 | |
|     };
 | |
|     loclass_opt_suc(div_key_p, &_init, cc_p, 8, false);
 | |
|     return _init;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * The second part of the tag MAC calculation, since the CC is already calculated into the state,
 | |
|  * this function is fed only the NR, and internally feeds the remaining 32 0-bits to generate the tag
 | |
|  * MAC response.
 | |
|  * @param _init - precalculated cipher state
 | |
|  * @param nr - the reader challenge
 | |
|  * @param mac - where to store the MAC
 | |
|  * @param div_key_p - the key to use
 | |
|  */
 | |
| void loclass_opt_doTagMAC_2(LoclassState_t _init,  uint8_t *nr, uint8_t mac[4], const uint8_t *div_key_p) {
 | |
|     loclass_opt_suc(div_key_p, &_init, nr, 4, true);
 | |
|     loclass_opt_output(div_key_p, &_init, mac);
 | |
| }
 | |
| 
 | |
| void loclass_iclass_calc_div_key(uint8_t *csn, uint8_t *key, uint8_t *div_key, bool elite) {
 | |
|     if (elite) {
 | |
|         uint8_t keytable[128] = {0};
 | |
|         uint8_t key_index[8] = {0};
 | |
|         uint8_t key_sel[8] = { 0 };
 | |
|         uint8_t key_sel_p[8] = { 0 };
 | |
|         loclass_hash2(key, keytable);
 | |
|         loclass_hash1(csn, key_index);
 | |
|         for (uint8_t i = 0; i < 8 ; i++)
 | |
|             key_sel[i] = keytable[key_index[i]];
 | |
| 
 | |
|         //Permute from iclass format to standard format
 | |
|         loclass_permutekey_rev(key_sel, key_sel_p);
 | |
|         loclass_diversifyKey(csn, key_sel_p, div_key);
 | |
|     } else {
 | |
|         loclass_diversifyKey(csn, key, div_key);
 | |
|     }
 | |
| }
 |