 e3c7201a20
			
		
	
	
		e3c7201a20
		
			
		
	
	
	
	
		
			
			* Furi: rename and move core * Furi: drop CMSIS_OS header and unused api, partially refactor and cleanup the rest * Furi: CMSIS_OS drop and refactoring. * Furi: refactoring, remove cmsis legacy * Furi: fix incorrect assert on queue deallocation, cleanup timer * Furi: improve delay api, get rid of floats * hal: dropped furi_hal_crc * Furi: move DWT based delay to cortex HAL * Furi: update core documentation Co-authored-by: hedger <hedger@nanode.su>
		
			
				
	
	
		
			653 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			653 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "furi_hal_infrared.h"
 | |
| #include <core/check.h>
 | |
| #include "stm32wbxx_ll_dma.h"
 | |
| #include "sys/_stdint.h"
 | |
| #include <furi_hal_interrupt.h>
 | |
| #include <furi_hal_resources.h>
 | |
| 
 | |
| #include <stdint.h>
 | |
| #include <stm32wbxx_ll_tim.h>
 | |
| #include <stm32wbxx_ll_gpio.h>
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <furi.h>
 | |
| #include <math.h>
 | |
| 
 | |
| #define INFRARED_TX_DEBUG 0
 | |
| 
 | |
| #if INFRARED_TX_DEBUG == 1
 | |
| #define gpio_infrared_tx gpio_infrared_tx_debug
 | |
| const GpioPin gpio_infrared_tx_debug = {.port = GPIOA, .pin = GPIO_PIN_7};
 | |
| #endif
 | |
| 
 | |
| #define INFRARED_TIM_TX_DMA_BUFFER_SIZE 200
 | |
| #define INFRARED_POLARITY_SHIFT 1
 | |
| 
 | |
| #define INFRARED_TX_CCMR_HIGH \
 | |
|     (TIM_CCMR2_OC3PE | LL_TIM_OCMODE_PWM2) /* Mark time - enable PWM2 mode */
 | |
| #define INFRARED_TX_CCMR_LOW \
 | |
|     (TIM_CCMR2_OC3PE | LL_TIM_OCMODE_FORCED_INACTIVE) /* Space time - force low */
 | |
| 
 | |
| typedef struct {
 | |
|     FuriHalInfraredRxCaptureCallback capture_callback;
 | |
|     void* capture_context;
 | |
|     FuriHalInfraredRxTimeoutCallback timeout_callback;
 | |
|     void* timeout_context;
 | |
| } InfraredTimRx;
 | |
| 
 | |
| typedef struct {
 | |
|     uint8_t* polarity;
 | |
|     uint16_t* data;
 | |
|     size_t size;
 | |
|     bool packet_end;
 | |
|     bool last_packet_end;
 | |
| } InfraredTxBuf;
 | |
| 
 | |
| typedef struct {
 | |
|     float cycle_duration;
 | |
|     FuriHalInfraredTxGetDataISRCallback data_callback;
 | |
|     FuriHalInfraredTxSignalSentISRCallback signal_sent_callback;
 | |
|     void* data_context;
 | |
|     void* signal_sent_context;
 | |
|     InfraredTxBuf buffer[2];
 | |
|     FuriSemaphore* stop_semaphore;
 | |
|     uint32_t
 | |
|         tx_timing_rest_duration; /** if timing is too long (> 0xFFFF), send it in few iterations */
 | |
|     bool tx_timing_rest_level;
 | |
|     FuriHalInfraredTxGetDataState tx_timing_rest_status;
 | |
| } InfraredTimTx;
 | |
| 
 | |
| typedef enum {
 | |
|     InfraredStateIdle, /** Furi Hal Infrared is ready to start RX or TX */
 | |
|     InfraredStateAsyncRx, /** Async RX started */
 | |
|     InfraredStateAsyncTx, /** Async TX started, DMA and timer is on */
 | |
|     InfraredStateAsyncTxStopReq, /** Async TX started, async stop request received */
 | |
|     InfraredStateAsyncTxStopInProgress, /** Async TX started, stop request is processed and we wait for last data to be sent */
 | |
|     InfraredStateAsyncTxStopped, /** Async TX complete, cleanup needed */
 | |
|     InfraredStateMAX,
 | |
| } InfraredState;
 | |
| 
 | |
| static volatile InfraredState furi_hal_infrared_state = InfraredStateIdle;
 | |
| static InfraredTimTx infrared_tim_tx;
 | |
| static InfraredTimRx infrared_tim_rx;
 | |
| 
 | |
| static void furi_hal_infrared_tx_fill_buffer(uint8_t buf_num, uint8_t polarity_shift);
 | |
| static void furi_hal_infrared_async_tx_free_resources(void);
 | |
| static void furi_hal_infrared_tx_dma_set_polarity(uint8_t buf_num, uint8_t polarity_shift);
 | |
| static void furi_hal_infrared_tx_dma_set_buffer(uint8_t buf_num);
 | |
| static void furi_hal_infrared_tx_fill_buffer_last(uint8_t buf_num);
 | |
| static uint8_t furi_hal_infrared_get_current_dma_tx_buffer(void);
 | |
| static void furi_hal_infrared_tx_dma_polarity_isr();
 | |
| static void furi_hal_infrared_tx_dma_isr();
 | |
| 
 | |
| static void furi_hal_infrared_tim_rx_isr() {
 | |
|     static uint32_t previous_captured_ch2 = 0;
 | |
| 
 | |
|     /* Timeout */
 | |
|     if(LL_TIM_IsActiveFlag_CC3(TIM2)) {
 | |
|         LL_TIM_ClearFlag_CC3(TIM2);
 | |
|         furi_assert(furi_hal_infrared_state == InfraredStateAsyncRx);
 | |
| 
 | |
|         /* Timers CNT register starts to counting from 0 to ARR, but it is
 | |
|          * reseted when Channel 1 catches interrupt. It is not reseted by
 | |
|          * channel 2, though, so we have to distract it's values (see TimerIRQSourceCCI1 ISR).
 | |
|          * This can cause false timeout: when time is over, but we started
 | |
|          * receiving new signal few microseconds ago, because CNT register
 | |
|          * is reseted once per period, not per sample. */
 | |
|         if(LL_GPIO_IsInputPinSet(gpio_infrared_rx.port, gpio_infrared_rx.pin) != 0) {
 | |
|             if(infrared_tim_rx.timeout_callback)
 | |
|                 infrared_tim_rx.timeout_callback(infrared_tim_rx.timeout_context);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Rising Edge */
 | |
|     if(LL_TIM_IsActiveFlag_CC1(TIM2)) {
 | |
|         LL_TIM_ClearFlag_CC1(TIM2);
 | |
|         furi_assert(furi_hal_infrared_state == InfraredStateAsyncRx);
 | |
| 
 | |
|         if(READ_BIT(TIM2->CCMR1, TIM_CCMR1_CC1S)) {
 | |
|             /* Low pin level is a Mark state of INFRARED signal. Invert level for further processing. */
 | |
|             uint32_t duration = LL_TIM_IC_GetCaptureCH1(TIM2) - previous_captured_ch2;
 | |
|             if(infrared_tim_rx.capture_callback)
 | |
|                 infrared_tim_rx.capture_callback(infrared_tim_rx.capture_context, 1, duration);
 | |
|         } else {
 | |
|             furi_assert(0);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Falling Edge */
 | |
|     if(LL_TIM_IsActiveFlag_CC2(TIM2)) {
 | |
|         LL_TIM_ClearFlag_CC2(TIM2);
 | |
|         furi_assert(furi_hal_infrared_state == InfraredStateAsyncRx);
 | |
| 
 | |
|         if(READ_BIT(TIM2->CCMR1, TIM_CCMR1_CC2S)) {
 | |
|             /* High pin level is a Space state of INFRARED signal. Invert level for further processing. */
 | |
|             uint32_t duration = LL_TIM_IC_GetCaptureCH2(TIM2);
 | |
|             previous_captured_ch2 = duration;
 | |
|             if(infrared_tim_rx.capture_callback)
 | |
|                 infrared_tim_rx.capture_callback(infrared_tim_rx.capture_context, 0, duration);
 | |
|         } else {
 | |
|             furi_assert(0);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void furi_hal_infrared_async_rx_start(void) {
 | |
|     furi_assert(furi_hal_infrared_state == InfraredStateIdle);
 | |
| 
 | |
|     furi_hal_gpio_init_ex(
 | |
|         &gpio_infrared_rx, GpioModeAltFunctionPushPull, GpioPullNo, GpioSpeedLow, GpioAltFn1TIM2);
 | |
| 
 | |
|     LL_TIM_InitTypeDef TIM_InitStruct = {0};
 | |
|     TIM_InitStruct.Prescaler = 64 - 1;
 | |
|     TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
 | |
|     TIM_InitStruct.Autoreload = 0x7FFFFFFE;
 | |
|     TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
 | |
|     LL_TIM_Init(TIM2, &TIM_InitStruct);
 | |
| 
 | |
|     LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL);
 | |
|     LL_TIM_DisableARRPreload(TIM2);
 | |
|     LL_TIM_SetTriggerInput(TIM2, LL_TIM_TS_TI1FP1);
 | |
|     LL_TIM_SetSlaveMode(TIM2, LL_TIM_SLAVEMODE_RESET);
 | |
|     LL_TIM_CC_DisableChannel(TIM2, LL_TIM_CHANNEL_CH2);
 | |
|     LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_FILTER_FDIV1);
 | |
|     LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_POLARITY_FALLING);
 | |
|     LL_TIM_DisableIT_TRIG(TIM2);
 | |
|     LL_TIM_DisableDMAReq_TRIG(TIM2);
 | |
|     LL_TIM_SetTriggerOutput(TIM2, LL_TIM_TRGO_RESET);
 | |
|     LL_TIM_EnableMasterSlaveMode(TIM2);
 | |
|     LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ACTIVEINPUT_DIRECTTI);
 | |
|     LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ICPSC_DIV1);
 | |
|     LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_FILTER_FDIV1);
 | |
|     LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_POLARITY_RISING);
 | |
|     LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ACTIVEINPUT_INDIRECTTI);
 | |
|     LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ICPSC_DIV1);
 | |
| 
 | |
|     furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, furi_hal_infrared_tim_rx_isr, NULL);
 | |
|     furi_hal_infrared_state = InfraredStateAsyncRx;
 | |
| 
 | |
|     LL_TIM_EnableIT_CC1(TIM2);
 | |
|     LL_TIM_EnableIT_CC2(TIM2);
 | |
|     LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH1);
 | |
|     LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2);
 | |
| 
 | |
|     LL_TIM_SetCounter(TIM2, 0);
 | |
|     LL_TIM_EnableCounter(TIM2);
 | |
| }
 | |
| 
 | |
| void furi_hal_infrared_async_rx_stop(void) {
 | |
|     furi_assert(furi_hal_infrared_state == InfraredStateAsyncRx);
 | |
| 
 | |
|     FURI_CRITICAL_ENTER();
 | |
| 
 | |
|     LL_TIM_DeInit(TIM2);
 | |
|     furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, NULL, NULL);
 | |
|     furi_hal_infrared_state = InfraredStateIdle;
 | |
| 
 | |
|     FURI_CRITICAL_EXIT();
 | |
| }
 | |
| 
 | |
| void furi_hal_infrared_async_rx_set_timeout(uint32_t timeout_us) {
 | |
|     LL_TIM_OC_SetCompareCH3(TIM2, timeout_us);
 | |
|     LL_TIM_OC_SetMode(TIM2, LL_TIM_CHANNEL_CH3, LL_TIM_OCMODE_ACTIVE);
 | |
|     LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH3);
 | |
|     LL_TIM_EnableIT_CC3(TIM2);
 | |
| }
 | |
| 
 | |
| bool furi_hal_infrared_is_busy(void) {
 | |
|     return furi_hal_infrared_state != InfraredStateIdle;
 | |
| }
 | |
| 
 | |
| void furi_hal_infrared_async_rx_set_capture_isr_callback(
 | |
|     FuriHalInfraredRxCaptureCallback callback,
 | |
|     void* ctx) {
 | |
|     infrared_tim_rx.capture_callback = callback;
 | |
|     infrared_tim_rx.capture_context = ctx;
 | |
| }
 | |
| 
 | |
| void furi_hal_infrared_async_rx_set_timeout_isr_callback(
 | |
|     FuriHalInfraredRxTimeoutCallback callback,
 | |
|     void* ctx) {
 | |
|     infrared_tim_rx.timeout_callback = callback;
 | |
|     infrared_tim_rx.timeout_context = ctx;
 | |
| }
 | |
| 
 | |
| static void furi_hal_infrared_tx_dma_terminate(void) {
 | |
|     LL_DMA_DisableIT_TC(DMA1, LL_DMA_CHANNEL_1);
 | |
|     LL_DMA_DisableIT_HT(DMA1, LL_DMA_CHANNEL_2);
 | |
|     LL_DMA_DisableIT_TC(DMA1, LL_DMA_CHANNEL_2);
 | |
| 
 | |
|     furi_assert(furi_hal_infrared_state == InfraredStateAsyncTxStopInProgress);
 | |
| 
 | |
|     LL_DMA_DisableIT_TC(DMA1, LL_DMA_CHANNEL_1);
 | |
|     LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_2);
 | |
|     LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_1);
 | |
|     LL_TIM_DisableCounter(TIM1);
 | |
|     FuriStatus status = furi_semaphore_release(infrared_tim_tx.stop_semaphore);
 | |
|     furi_check(status == FuriStatusOk);
 | |
|     furi_hal_infrared_state = InfraredStateAsyncTxStopped;
 | |
| }
 | |
| 
 | |
| static uint8_t furi_hal_infrared_get_current_dma_tx_buffer(void) {
 | |
|     uint8_t buf_num = 0;
 | |
|     uint32_t buffer_adr = LL_DMA_GetMemoryAddress(DMA1, LL_DMA_CHANNEL_2);
 | |
|     if(buffer_adr == (uint32_t)infrared_tim_tx.buffer[0].data) {
 | |
|         buf_num = 0;
 | |
|     } else if(buffer_adr == (uint32_t)infrared_tim_tx.buffer[1].data) {
 | |
|         buf_num = 1;
 | |
|     } else {
 | |
|         furi_assert(0);
 | |
|     }
 | |
|     return buf_num;
 | |
| }
 | |
| 
 | |
| static void furi_hal_infrared_tx_dma_polarity_isr() {
 | |
|     if(LL_DMA_IsActiveFlag_TE1(DMA1)) {
 | |
|         LL_DMA_ClearFlag_TE1(DMA1);
 | |
|         furi_crash(NULL);
 | |
|     }
 | |
|     if(LL_DMA_IsActiveFlag_TC1(DMA1) && LL_DMA_IsEnabledIT_TC(DMA1, LL_DMA_CHANNEL_1)) {
 | |
|         LL_DMA_ClearFlag_TC1(DMA1);
 | |
| 
 | |
|         furi_check(
 | |
|             (furi_hal_infrared_state == InfraredStateAsyncTx) ||
 | |
|             (furi_hal_infrared_state == InfraredStateAsyncTxStopReq) ||
 | |
|             (furi_hal_infrared_state == InfraredStateAsyncTxStopInProgress));
 | |
|         /* actually TC2 is processed and buffer is next buffer */
 | |
|         uint8_t next_buf_num = furi_hal_infrared_get_current_dma_tx_buffer();
 | |
|         furi_hal_infrared_tx_dma_set_polarity(next_buf_num, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void furi_hal_infrared_tx_dma_isr() {
 | |
|     if(LL_DMA_IsActiveFlag_TE2(DMA1)) {
 | |
|         LL_DMA_ClearFlag_TE2(DMA1);
 | |
|         furi_crash(NULL);
 | |
|     }
 | |
|     if(LL_DMA_IsActiveFlag_HT2(DMA1) && LL_DMA_IsEnabledIT_HT(DMA1, LL_DMA_CHANNEL_2)) {
 | |
|         LL_DMA_ClearFlag_HT2(DMA1);
 | |
|         uint8_t buf_num = furi_hal_infrared_get_current_dma_tx_buffer();
 | |
|         uint8_t next_buf_num = !buf_num;
 | |
|         if(infrared_tim_tx.buffer[buf_num].last_packet_end) {
 | |
|             LL_DMA_DisableIT_HT(DMA1, LL_DMA_CHANNEL_2);
 | |
|         } else if(
 | |
|             !infrared_tim_tx.buffer[buf_num].packet_end ||
 | |
|             (furi_hal_infrared_state == InfraredStateAsyncTx)) {
 | |
|             furi_hal_infrared_tx_fill_buffer(next_buf_num, 0);
 | |
|             if(infrared_tim_tx.buffer[next_buf_num].last_packet_end) {
 | |
|                 LL_DMA_DisableIT_HT(DMA1, LL_DMA_CHANNEL_2);
 | |
|             }
 | |
|         } else if(furi_hal_infrared_state == InfraredStateAsyncTxStopReq) {
 | |
|             /* fallthrough */
 | |
|         } else {
 | |
|             furi_crash(NULL);
 | |
|         }
 | |
|     }
 | |
|     if(LL_DMA_IsActiveFlag_TC2(DMA1) && LL_DMA_IsEnabledIT_TC(DMA1, LL_DMA_CHANNEL_2)) {
 | |
|         LL_DMA_ClearFlag_TC2(DMA1);
 | |
|         furi_check(
 | |
|             (furi_hal_infrared_state == InfraredStateAsyncTxStopInProgress) ||
 | |
|             (furi_hal_infrared_state == InfraredStateAsyncTxStopReq) ||
 | |
|             (furi_hal_infrared_state == InfraredStateAsyncTx));
 | |
| 
 | |
|         uint8_t buf_num = furi_hal_infrared_get_current_dma_tx_buffer();
 | |
|         uint8_t next_buf_num = !buf_num;
 | |
|         if(furi_hal_infrared_state == InfraredStateAsyncTxStopInProgress) {
 | |
|             furi_hal_infrared_tx_dma_terminate();
 | |
|         } else if(
 | |
|             infrared_tim_tx.buffer[buf_num].last_packet_end ||
 | |
|             (infrared_tim_tx.buffer[buf_num].packet_end &&
 | |
|              (furi_hal_infrared_state == InfraredStateAsyncTxStopReq))) {
 | |
|             furi_hal_infrared_state = InfraredStateAsyncTxStopInProgress;
 | |
|             furi_hal_infrared_tx_fill_buffer_last(next_buf_num);
 | |
|             furi_hal_infrared_tx_dma_set_buffer(next_buf_num);
 | |
|         } else {
 | |
|             /* if it's not end of the packet - continue receiving */
 | |
|             furi_hal_infrared_tx_dma_set_buffer(next_buf_num);
 | |
|         }
 | |
|         if(infrared_tim_tx.signal_sent_callback && infrared_tim_tx.buffer[buf_num].packet_end &&
 | |
|            (furi_hal_infrared_state != InfraredStateAsyncTxStopped)) {
 | |
|             infrared_tim_tx.signal_sent_callback(infrared_tim_tx.signal_sent_context);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void furi_hal_infrared_configure_tim_pwm_tx(uint32_t freq, float duty_cycle) {
 | |
|     /*    LL_DBGMCU_APB2_GRP1_FreezePeriph(LL_DBGMCU_APB2_GRP1_TIM1_STOP); */
 | |
| 
 | |
|     LL_TIM_DisableCounter(TIM1);
 | |
|     LL_TIM_SetRepetitionCounter(TIM1, 0);
 | |
|     LL_TIM_SetCounter(TIM1, 0);
 | |
|     LL_TIM_SetPrescaler(TIM1, 0);
 | |
|     LL_TIM_SetCounterMode(TIM1, LL_TIM_COUNTERMODE_UP);
 | |
|     LL_TIM_EnableARRPreload(TIM1);
 | |
|     LL_TIM_SetAutoReload(
 | |
|         TIM1, __LL_TIM_CALC_ARR(SystemCoreClock, LL_TIM_GetPrescaler(TIM1), freq));
 | |
| #if INFRARED_TX_DEBUG == 1
 | |
|     LL_TIM_OC_SetCompareCH1(TIM1, ((LL_TIM_GetAutoReload(TIM1) + 1) * (1 - duty_cycle)));
 | |
|     LL_TIM_OC_EnablePreload(TIM1, LL_TIM_CHANNEL_CH1);
 | |
|     /* LL_TIM_OCMODE_PWM2 set by DMA */
 | |
|     LL_TIM_OC_SetMode(TIM1, LL_TIM_CHANNEL_CH1, LL_TIM_OCMODE_FORCED_INACTIVE);
 | |
|     LL_TIM_OC_SetPolarity(TIM1, LL_TIM_CHANNEL_CH1N, LL_TIM_OCPOLARITY_HIGH);
 | |
|     LL_TIM_OC_DisableFast(TIM1, LL_TIM_CHANNEL_CH1);
 | |
|     LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH1N);
 | |
|     LL_TIM_DisableIT_CC1(TIM1);
 | |
| #else
 | |
|     LL_TIM_OC_SetCompareCH3(TIM1, ((LL_TIM_GetAutoReload(TIM1) + 1) * (1 - duty_cycle)));
 | |
|     LL_TIM_OC_EnablePreload(TIM1, LL_TIM_CHANNEL_CH3);
 | |
|     /* LL_TIM_OCMODE_PWM2 set by DMA */
 | |
|     LL_TIM_OC_SetMode(TIM1, LL_TIM_CHANNEL_CH3, LL_TIM_OCMODE_FORCED_INACTIVE);
 | |
|     LL_TIM_OC_SetPolarity(TIM1, LL_TIM_CHANNEL_CH3N, LL_TIM_OCPOLARITY_HIGH);
 | |
|     LL_TIM_OC_DisableFast(TIM1, LL_TIM_CHANNEL_CH3);
 | |
|     LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH3N);
 | |
|     LL_TIM_DisableIT_CC3(TIM1);
 | |
| #endif
 | |
|     LL_TIM_DisableMasterSlaveMode(TIM1);
 | |
|     LL_TIM_EnableAllOutputs(TIM1);
 | |
|     LL_TIM_DisableIT_UPDATE(TIM1);
 | |
|     LL_TIM_EnableDMAReq_UPDATE(TIM1);
 | |
| 
 | |
|     NVIC_SetPriority(TIM1_UP_TIM16_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 5, 0));
 | |
|     NVIC_EnableIRQ(TIM1_UP_TIM16_IRQn);
 | |
| }
 | |
| 
 | |
| static void furi_hal_infrared_configure_tim_cmgr2_dma_tx(void) {
 | |
|     LL_DMA_InitTypeDef dma_config = {0};
 | |
| #if INFRARED_TX_DEBUG == 1
 | |
|     dma_config.PeriphOrM2MSrcAddress = (uint32_t) & (TIM1->CCMR1);
 | |
| #else
 | |
|     dma_config.PeriphOrM2MSrcAddress = (uint32_t) & (TIM1->CCMR2);
 | |
| #endif
 | |
|     dma_config.MemoryOrM2MDstAddress = (uint32_t)NULL;
 | |
|     dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
 | |
|     dma_config.Mode = LL_DMA_MODE_NORMAL;
 | |
|     dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
 | |
|     dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
 | |
|     /* fill word to have other bits set to 0 */
 | |
|     dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
 | |
|     dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_BYTE;
 | |
|     dma_config.NbData = 0;
 | |
|     dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM1_UP;
 | |
|     dma_config.Priority = LL_DMA_PRIORITY_VERYHIGH;
 | |
|     LL_DMA_Init(DMA1, LL_DMA_CHANNEL_1, &dma_config);
 | |
| 
 | |
|     LL_DMA_ClearFlag_TE1(DMA1);
 | |
|     LL_DMA_ClearFlag_TC1(DMA1);
 | |
| 
 | |
|     LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_1);
 | |
|     LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_1);
 | |
| 
 | |
|     furi_hal_interrupt_set_isr_ex(
 | |
|         FuriHalInterruptIdDma1Ch1, 4, furi_hal_infrared_tx_dma_polarity_isr, NULL);
 | |
| }
 | |
| 
 | |
| static void furi_hal_infrared_configure_tim_rcr_dma_tx(void) {
 | |
|     LL_DMA_InitTypeDef dma_config = {0};
 | |
|     dma_config.PeriphOrM2MSrcAddress = (uint32_t) & (TIM1->RCR);
 | |
|     dma_config.MemoryOrM2MDstAddress = (uint32_t)NULL;
 | |
|     dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
 | |
|     dma_config.Mode = LL_DMA_MODE_NORMAL;
 | |
|     dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
 | |
|     dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
 | |
|     dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_HALFWORD;
 | |
|     dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_HALFWORD;
 | |
|     dma_config.NbData = 0;
 | |
|     dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM1_UP;
 | |
|     dma_config.Priority = LL_DMA_PRIORITY_MEDIUM;
 | |
|     LL_DMA_Init(DMA1, LL_DMA_CHANNEL_2, &dma_config);
 | |
| 
 | |
|     LL_DMA_ClearFlag_TC2(DMA1);
 | |
|     LL_DMA_ClearFlag_HT2(DMA1);
 | |
|     LL_DMA_ClearFlag_TE2(DMA1);
 | |
| 
 | |
|     LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_2);
 | |
|     LL_DMA_EnableIT_HT(DMA1, LL_DMA_CHANNEL_2);
 | |
|     LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_2);
 | |
| 
 | |
|     furi_hal_interrupt_set_isr_ex(
 | |
|         FuriHalInterruptIdDma1Ch2, 5, furi_hal_infrared_tx_dma_isr, NULL);
 | |
| }
 | |
| 
 | |
| static void furi_hal_infrared_tx_fill_buffer_last(uint8_t buf_num) {
 | |
|     furi_assert(buf_num < 2);
 | |
|     furi_assert(furi_hal_infrared_state != InfraredStateAsyncRx);
 | |
|     furi_assert(furi_hal_infrared_state < InfraredStateMAX);
 | |
|     furi_assert(infrared_tim_tx.data_callback);
 | |
|     InfraredTxBuf* buffer = &infrared_tim_tx.buffer[buf_num];
 | |
|     furi_assert(buffer->data != NULL);
 | |
|     (void)buffer->data;
 | |
|     furi_assert(buffer->polarity != NULL);
 | |
|     (void)buffer->polarity;
 | |
| 
 | |
|     infrared_tim_tx.buffer[buf_num].data[0] = 0; // 1 pulse
 | |
|     infrared_tim_tx.buffer[buf_num].polarity[0] = INFRARED_TX_CCMR_LOW;
 | |
|     infrared_tim_tx.buffer[buf_num].data[1] = 0; // 1 pulse
 | |
|     infrared_tim_tx.buffer[buf_num].polarity[1] = INFRARED_TX_CCMR_LOW;
 | |
|     infrared_tim_tx.buffer[buf_num].size = 2;
 | |
|     infrared_tim_tx.buffer[buf_num].last_packet_end = true;
 | |
|     infrared_tim_tx.buffer[buf_num].packet_end = true;
 | |
| }
 | |
| 
 | |
| static void furi_hal_infrared_tx_fill_buffer(uint8_t buf_num, uint8_t polarity_shift) {
 | |
|     furi_assert(buf_num < 2);
 | |
|     furi_assert(furi_hal_infrared_state != InfraredStateAsyncRx);
 | |
|     furi_assert(furi_hal_infrared_state < InfraredStateMAX);
 | |
|     furi_assert(infrared_tim_tx.data_callback);
 | |
|     InfraredTxBuf* buffer = &infrared_tim_tx.buffer[buf_num];
 | |
|     furi_assert(buffer->data != NULL);
 | |
|     furi_assert(buffer->polarity != NULL);
 | |
| 
 | |
|     FuriHalInfraredTxGetDataState status = FuriHalInfraredTxGetDataStateOk;
 | |
|     uint32_t duration = 0;
 | |
|     bool level = 0;
 | |
|     size_t* size = &buffer->size;
 | |
|     size_t polarity_counter = 0;
 | |
|     while(polarity_shift--) {
 | |
|         buffer->polarity[polarity_counter++] = INFRARED_TX_CCMR_LOW;
 | |
|     }
 | |
| 
 | |
|     for(*size = 0; (*size < INFRARED_TIM_TX_DMA_BUFFER_SIZE) &&
 | |
|                    (status == FuriHalInfraredTxGetDataStateOk);) {
 | |
|         if(infrared_tim_tx.tx_timing_rest_duration > 0) {
 | |
|             if(infrared_tim_tx.tx_timing_rest_duration > 0xFFFF) {
 | |
|                 buffer->data[*size] = 0xFFFF;
 | |
|                 status = FuriHalInfraredTxGetDataStateOk;
 | |
|             } else {
 | |
|                 buffer->data[*size] = infrared_tim_tx.tx_timing_rest_duration;
 | |
|                 status = infrared_tim_tx.tx_timing_rest_status;
 | |
|             }
 | |
|             infrared_tim_tx.tx_timing_rest_duration -= buffer->data[*size];
 | |
|             buffer->polarity[polarity_counter] = infrared_tim_tx.tx_timing_rest_level ?
 | |
|                                                      INFRARED_TX_CCMR_HIGH :
 | |
|                                                      INFRARED_TX_CCMR_LOW;
 | |
|             ++(*size);
 | |
|             ++polarity_counter;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         status = infrared_tim_tx.data_callback(infrared_tim_tx.data_context, &duration, &level);
 | |
| 
 | |
|         uint32_t num_of_impulses = roundf(duration / infrared_tim_tx.cycle_duration);
 | |
| 
 | |
|         if(num_of_impulses == 0) {
 | |
|             if((*size == 0) && (status == FuriHalInfraredTxGetDataStateDone)) {
 | |
|                 /* if this is one sample in current buffer, but we
 | |
|                  * have more to send - continue
 | |
|                  */
 | |
|                 status = FuriHalInfraredTxGetDataStateOk;
 | |
|             }
 | |
|         } else if((num_of_impulses - 1) > 0xFFFF) {
 | |
|             infrared_tim_tx.tx_timing_rest_duration = num_of_impulses - 1;
 | |
|             infrared_tim_tx.tx_timing_rest_status = status;
 | |
|             infrared_tim_tx.tx_timing_rest_level = level;
 | |
|             status = FuriHalInfraredTxGetDataStateOk;
 | |
|         } else {
 | |
|             buffer->polarity[polarity_counter] = level ? INFRARED_TX_CCMR_HIGH :
 | |
|                                                          INFRARED_TX_CCMR_LOW;
 | |
|             buffer->data[*size] = num_of_impulses - 1;
 | |
|             ++(*size);
 | |
|             ++polarity_counter;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     buffer->last_packet_end = (status == FuriHalInfraredTxGetDataStateLastDone);
 | |
|     buffer->packet_end = buffer->last_packet_end || (status == FuriHalInfraredTxGetDataStateDone);
 | |
| 
 | |
|     if(*size == 0) {
 | |
|         buffer->data[0] = 0; // 1 pulse
 | |
|         buffer->polarity[0] = INFRARED_TX_CCMR_LOW;
 | |
|         buffer->size = 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void furi_hal_infrared_tx_dma_set_polarity(uint8_t buf_num, uint8_t polarity_shift) {
 | |
|     furi_assert(buf_num < 2);
 | |
|     furi_assert(furi_hal_infrared_state < InfraredStateMAX);
 | |
|     InfraredTxBuf* buffer = &infrared_tim_tx.buffer[buf_num];
 | |
|     furi_assert(buffer->polarity != NULL);
 | |
| 
 | |
|     FURI_CRITICAL_ENTER();
 | |
|     bool channel_enabled = LL_DMA_IsEnabledChannel(DMA1, LL_DMA_CHANNEL_1);
 | |
|     if(channel_enabled) {
 | |
|         LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_1);
 | |
|     }
 | |
|     LL_DMA_SetMemoryAddress(DMA1, LL_DMA_CHANNEL_1, (uint32_t)buffer->polarity);
 | |
|     LL_DMA_SetDataLength(DMA1, LL_DMA_CHANNEL_1, buffer->size + polarity_shift);
 | |
|     if(channel_enabled) {
 | |
|         LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
 | |
|     }
 | |
|     FURI_CRITICAL_EXIT();
 | |
| }
 | |
| 
 | |
| static void furi_hal_infrared_tx_dma_set_buffer(uint8_t buf_num) {
 | |
|     furi_assert(buf_num < 2);
 | |
|     furi_assert(furi_hal_infrared_state < InfraredStateMAX);
 | |
|     InfraredTxBuf* buffer = &infrared_tim_tx.buffer[buf_num];
 | |
|     furi_assert(buffer->data != NULL);
 | |
| 
 | |
|     /* non-circular mode requires disabled channel before setup */
 | |
|     FURI_CRITICAL_ENTER();
 | |
|     bool channel_enabled = LL_DMA_IsEnabledChannel(DMA1, LL_DMA_CHANNEL_2);
 | |
|     if(channel_enabled) {
 | |
|         LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_2);
 | |
|     }
 | |
|     LL_DMA_SetMemoryAddress(DMA1, LL_DMA_CHANNEL_2, (uint32_t)buffer->data);
 | |
|     LL_DMA_SetDataLength(DMA1, LL_DMA_CHANNEL_2, buffer->size);
 | |
|     if(channel_enabled) {
 | |
|         LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_2);
 | |
|     }
 | |
|     FURI_CRITICAL_EXIT();
 | |
| }
 | |
| 
 | |
| static void furi_hal_infrared_async_tx_free_resources(void) {
 | |
|     furi_assert(
 | |
|         (furi_hal_infrared_state == InfraredStateIdle) ||
 | |
|         (furi_hal_infrared_state == InfraredStateAsyncTxStopped));
 | |
| 
 | |
|     furi_hal_gpio_init(&gpio_infrared_tx, GpioModeOutputOpenDrain, GpioPullDown, GpioSpeedLow);
 | |
|     furi_hal_interrupt_set_isr(FuriHalInterruptIdDma1Ch1, NULL, NULL);
 | |
|     furi_hal_interrupt_set_isr(FuriHalInterruptIdDma1Ch2, NULL, NULL);
 | |
|     LL_TIM_DeInit(TIM1);
 | |
| 
 | |
|     furi_semaphore_free(infrared_tim_tx.stop_semaphore);
 | |
|     free(infrared_tim_tx.buffer[0].data);
 | |
|     free(infrared_tim_tx.buffer[1].data);
 | |
|     free(infrared_tim_tx.buffer[0].polarity);
 | |
|     free(infrared_tim_tx.buffer[1].polarity);
 | |
| 
 | |
|     infrared_tim_tx.buffer[0].data = NULL;
 | |
|     infrared_tim_tx.buffer[1].data = NULL;
 | |
|     infrared_tim_tx.buffer[0].polarity = NULL;
 | |
|     infrared_tim_tx.buffer[1].polarity = NULL;
 | |
| }
 | |
| 
 | |
| void furi_hal_infrared_async_tx_start(uint32_t freq, float duty_cycle) {
 | |
|     if((duty_cycle > 1) || (duty_cycle <= 0) || (freq > INFRARED_MAX_FREQUENCY) ||
 | |
|        (freq < INFRARED_MIN_FREQUENCY) || (infrared_tim_tx.data_callback == NULL)) {
 | |
|         furi_crash(NULL);
 | |
|     }
 | |
| 
 | |
|     furi_assert(furi_hal_infrared_state == InfraredStateIdle);
 | |
|     furi_assert(infrared_tim_tx.buffer[0].data == NULL);
 | |
|     furi_assert(infrared_tim_tx.buffer[1].data == NULL);
 | |
|     furi_assert(infrared_tim_tx.buffer[0].polarity == NULL);
 | |
|     furi_assert(infrared_tim_tx.buffer[1].polarity == NULL);
 | |
| 
 | |
|     size_t alloc_size_data = INFRARED_TIM_TX_DMA_BUFFER_SIZE * sizeof(uint16_t);
 | |
|     infrared_tim_tx.buffer[0].data = malloc(alloc_size_data);
 | |
|     infrared_tim_tx.buffer[1].data = malloc(alloc_size_data);
 | |
| 
 | |
|     size_t alloc_size_polarity =
 | |
|         (INFRARED_TIM_TX_DMA_BUFFER_SIZE + INFRARED_POLARITY_SHIFT) * sizeof(uint8_t);
 | |
|     infrared_tim_tx.buffer[0].polarity = malloc(alloc_size_polarity);
 | |
|     infrared_tim_tx.buffer[1].polarity = malloc(alloc_size_polarity);
 | |
| 
 | |
|     infrared_tim_tx.stop_semaphore = furi_semaphore_alloc(1, 0);
 | |
|     infrared_tim_tx.cycle_duration = 1000000.0 / freq;
 | |
|     infrared_tim_tx.tx_timing_rest_duration = 0;
 | |
| 
 | |
|     furi_hal_infrared_tx_fill_buffer(0, INFRARED_POLARITY_SHIFT);
 | |
| 
 | |
|     furi_hal_infrared_configure_tim_pwm_tx(freq, duty_cycle);
 | |
|     furi_hal_infrared_configure_tim_cmgr2_dma_tx();
 | |
|     furi_hal_infrared_configure_tim_rcr_dma_tx();
 | |
|     furi_hal_infrared_tx_dma_set_polarity(0, INFRARED_POLARITY_SHIFT);
 | |
|     furi_hal_infrared_tx_dma_set_buffer(0);
 | |
| 
 | |
|     furi_hal_infrared_state = InfraredStateAsyncTx;
 | |
| 
 | |
|     LL_TIM_ClearFlag_UPDATE(TIM1);
 | |
|     LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
 | |
|     LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_2);
 | |
|     furi_delay_us(5);
 | |
|     LL_TIM_GenerateEvent_UPDATE(TIM1); /* DMA -> TIMx_RCR */
 | |
|     furi_delay_us(5);
 | |
|     LL_GPIO_ResetOutputPin(
 | |
|         gpio_infrared_tx.port, gpio_infrared_tx.pin); /* when disable it prevents false pulse */
 | |
|     furi_hal_gpio_init_ex(
 | |
|         &gpio_infrared_tx, GpioModeAltFunctionPushPull, GpioPullUp, GpioSpeedHigh, GpioAltFn1TIM1);
 | |
| 
 | |
|     FURI_CRITICAL_ENTER();
 | |
|     LL_TIM_GenerateEvent_UPDATE(TIM1); /* TIMx_RCR -> Repetition counter */
 | |
|     LL_TIM_EnableCounter(TIM1);
 | |
|     FURI_CRITICAL_EXIT();
 | |
| }
 | |
| 
 | |
| void furi_hal_infrared_async_tx_wait_termination(void) {
 | |
|     furi_assert(furi_hal_infrared_state >= InfraredStateAsyncTx);
 | |
|     furi_assert(furi_hal_infrared_state < InfraredStateMAX);
 | |
| 
 | |
|     FuriStatus status;
 | |
|     status = furi_semaphore_acquire(infrared_tim_tx.stop_semaphore, FuriWaitForever);
 | |
|     furi_check(status == FuriStatusOk);
 | |
|     furi_hal_infrared_async_tx_free_resources();
 | |
|     furi_hal_infrared_state = InfraredStateIdle;
 | |
| }
 | |
| 
 | |
| void furi_hal_infrared_async_tx_stop(void) {
 | |
|     furi_assert(furi_hal_infrared_state >= InfraredStateAsyncTx);
 | |
|     furi_assert(furi_hal_infrared_state < InfraredStateMAX);
 | |
| 
 | |
|     FURI_CRITICAL_ENTER();
 | |
|     if(furi_hal_infrared_state == InfraredStateAsyncTx)
 | |
|         furi_hal_infrared_state = InfraredStateAsyncTxStopReq;
 | |
|     FURI_CRITICAL_EXIT();
 | |
| 
 | |
|     furi_hal_infrared_async_tx_wait_termination();
 | |
| }
 | |
| 
 | |
| void furi_hal_infrared_async_tx_set_data_isr_callback(
 | |
|     FuriHalInfraredTxGetDataISRCallback callback,
 | |
|     void* context) {
 | |
|     furi_assert(furi_hal_infrared_state == InfraredStateIdle);
 | |
|     infrared_tim_tx.data_callback = callback;
 | |
|     infrared_tim_tx.data_context = context;
 | |
| }
 | |
| 
 | |
| void furi_hal_infrared_async_tx_set_signal_sent_isr_callback(
 | |
|     FuriHalInfraredTxSignalSentISRCallback callback,
 | |
|     void* context) {
 | |
|     infrared_tim_tx.signal_sent_callback = callback;
 | |
|     infrared_tim_tx.signal_sent_context = context;
 | |
| }
 |